scholarly journals Observations of Boundary Layer Wind and Turbulence of a Landfalling Tropical Cyclone

Author(s):  
Zhongkuo Zhao ◽  
Ruiquan Gao ◽  
Jun A. Zhang ◽  
Yong Zhu ◽  
Chunxia Liu ◽  
...  

Abstract This study analyzed the atmospheric boundary layer characteristics based on the multiple level observations by a 350-m height tower during the landfall of Super Typhoon Mangkhut (1822). Mean wind profiles showed logarithmic wind profiles at different wind speed ranges suggesting nearly constant flux layers. The height of the constant layer increased with the wind speed and deceased with the radial distance from the storm centre. This behaviour was supported by flux observations. Momentum fluxes and turbulent kinetic energy increased with the wind speed at all flux measurement levels. The drag coefficient (surface roughness) estimated was nearly a constant with a value of 8´10-3 (0.09 m). Both the estimated eddy diffusivity and mixing length varied with height. The eddy diffusivity also varied with the wind speed. Our results supported that the eddy diffusivity is larger over land than over ocean in a same wind speed range.

2007 ◽  
Vol 64 (4) ◽  
pp. 1103-1115 ◽  
Author(s):  
William M. Drennan ◽  
Jun A. Zhang ◽  
Jeffrey R. French ◽  
Cyril McCormick ◽  
Peter G. Black

Abstract As part of the recent ONR-sponsored Coupled Boundary Layer Air–Sea Transfer (CBLAST) Departmental Research Initiative, an aircraft was instrumented to carry out direct turbulent flux measurements in the high wind boundary layer of a hurricane. During the 2003 field season flux measurements were made during Hurricanes Fabian and Isabel. Here the first direct measurements of latent heat fluxes measured in the hurricane boundary layer are reported. The previous wind speed range for humidity fluxes and Dalton numbers has been extended by over 50%. Up to 30 m s−1, the highest 10-m winds measured, the Dalton number is not significantly different from the Humidity Exchange over the Sea (HEXOS) result, with no evidence of an increase with wind speed.


2013 ◽  
Vol 28 (1) ◽  
pp. 77-99 ◽  
Author(s):  
Ian M. Giammanco ◽  
John L. Schroeder ◽  
Mark D. Powell

Abstract The characteristics of tropical cyclone vertical wind profiles and their associated wind speed peaks below 1.5 km were examined through the use of a large number of GPS dropwindsondes (GPS sondes) and radar-derived velocity–azimuth display (VAD) profiles. Composite wind profiles were generated to document the mean structure of tropical cyclone vertical wind profiles and their changes with storm-relative position. Composite profiles were observed to change as the radius decreased inward toward the radius of maximum winds. Profiles also varied between three azimuthal sectors. At landfall, wind profiles exhibited changes with radial distance and differences were observed between those within offshore and onshore flow regimes. The observations support a general reduction in boundary layer depth with decreasing radial distance. Wind profiles with peaks at low altitudes were typically confined to radii less than 60 km, near and radially inward from the radius of maximum winds. Wind speed maxima, when scaled by a layer mean wind, decreased in magnitude as the radius decreased. At landfall, composite profiles showed a distinct low-level wind speed maximum in the eyewall region with significant differences between the onshore and offshore flow regimes.


Author(s):  
Pramod Kumar ◽  
Maithili Sharan

For the dispersion of a pollutant released from a continuous source in the atmospheric boundary layer (ABL), a generalized analytical model describing the crosswind-integrated concentrations is presented. An analytical scheme is described to solve the resulting two-dimensional steady-state advection–diffusion equation for horizontal wind speed as a generalized function of vertical height above the ground and eddy diffusivity as a function of both downwind distance from the source and vertical height. Special cases of this model are deduced and an extensive analysis is carried out to compare the model with the known analytical models by taking the particular forms of wind speed and vertical eddy diffusivity. The proposed model is evaluated with the observations obtained from Copenhagen diffusion experiments in unstable conditions and Hanford and Prairie Grass experiments in stable conditions. In evaluation of the model, a recently proposed formulation for the wind speed in the entire ABL is used. It is concluded that the present model is performing well with the observations and can be used to predict the short-range dispersion from a continuous release. Further, it is shown that the accurate parameterizations of wind speed and eddy diffusivity provide a significant improvement in the agreement between computed and observed concentrations.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1091
Author(s):  
Jun A. Zhang ◽  
Evan A. Kalina ◽  
Mrinal K. Biswas ◽  
Robert F. Rogers ◽  
Ping Zhu ◽  
...  

This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades.


1999 ◽  
Vol 98-99 ◽  
pp. 145-158 ◽  
Author(s):  
Tetsuya Hiyama ◽  
Michiaki Sugita ◽  
Hans Bergström ◽  
Meelis Mölder

2018 ◽  
Vol 75 (9) ◽  
pp. 3159-3168 ◽  
Author(s):  
Jie Tang ◽  
Jun A. Zhang ◽  
Sim D. Aberson ◽  
Frank D. Marks ◽  
Xiaotu Lei

Abstract This study analyzes the fast-response (20 Hz) wind data collected by a multilevel tower during the landfalls of Tropical Storm Lionrock (1006), Typhoon Fanapi (1011), and Typhoon Megi (1015) in 2010. Turbulent momentum fluxes are calculated using the standard eddy-correlation method. Vertical eddy diffusivity Km and mixing length are estimated using the directly measured momentum fluxes and mean-wind profiles. It is found that the momentum flux increases with wind speed at all four levels. The eddy diffusivity calculated using the direct-flux method is compared to that using a theoretical method in which the vertical eddy diffusivity is formulated as a linear function of the friction velocity and height. It is found that below ~60 m, Km can be approximately parameterized using this theoretical method, though this method overestimates Km for higher altitude, indicating that the surface-layer depth is close to 60 m in the tropical cyclones studied here. It is also found that Km at each level varies with wind direction during landfalls: Km estimated based on observations with landward fetch is significantly larger than that estimated using data with seaward fetch. This result suggests that different parameterizations of Km should be used in the boundary layer schemes of numerical models forecasting tropical cyclones over land versus over the ocean.


2020 ◽  
Author(s):  
Mariska Koning ◽  
Louise Nuijens ◽  
Fred Bosveld ◽  
Pier Siebesma ◽  
Remco Verzijlbergh ◽  
...  

<p>Convective momentum transport (CMT) measurements are scarce, but important to constrain the impacts of CMT on wind profiles, variability of the wind and possibly the large-scale circulation.</p><p>We investigate how wind profiles and momentum fluxes change with cloudiness and convection. With stronger convection, we expect that the wind shear in the lowest 200m, wherein wind turbines are located, reduces. Cumulus days are generally strongly convective and hence well mixed. They are expected to differ from clear-sky days: the boundary layer is deeper, and cumulus may induce a different (thermal) circulation in the sub-cloud layer. Comparing cumulus and other days fairly, we must be mindful of the changes in convection strength with cloud cover, time of the day, seasons, and the wind strength that impacts the wind shear magnitude.</p><p>This study uses nine years of data from the Cabauw observatory, The Netherlands, containing 10-minute averages of wind speed, wind direction, and momentum fluxes from a 200 m tall tower along with cloud-base heights from a ceilometer. Realistic fine-scale Large Eddy Simulation (LES) hindcasts over the same time period and a 5km<sup>3</sup> domain over Cabauw provide insight into the processes at higher altitude. In both observations and LES, days with rooted clouds, which have strong connection to the sub-cloud layer, are separated from clear-sky days and days in which clouds only impact the convection through radiation effects. Days with rooted clouds are subsequently divided into three groups of increasing cloud cover: 5-30% (shallow clouds), 30-70% (somewhat deeper clouds) and >70% (overcast).</p><p>Both observations and LES show that shear in the near-surface wind speed (NSWS) reduces with stronger insolation, which is expected: more insolation causes a more unstable atmosphere, stronger convection, thus more mixing. In a weakly unstable atmosphere, rooted clouds (5-70% cloud cover) generally have better mixed winds (less normalised shear). The NSWS accelerates more from morning to afternoon on these days, indicating that not only the mixing is stronger, but also that downward mixing of higher momentum by the clouds affects the wind in the lowest 200m. If this is true, the assumption of Monin-Obukhov Similarity Theory (MOST) that large convective eddies are not important in the surface layer, does not hold. This possibly has a great impact on surface-flux parametrizations based on MOST, which are used by many numerical models, from local and mesoscale to global models. Analysing surface-layer scaling for momentum, we test whether this assumption is indeed violated in such cases.</p><p>Momentum transport profiles in LES show that when deeper clouds with larger cloud cover are present, transport in the cloud layer is larger. In the cross-wind component of the profile, the four categories show different deceleration in the mixed layer, and different acceleration near the top of the mixed layer. Likely, the stronger inversion-jump in the cross-wind causes this momentum flux character.</p><p>With this study, we provide an overview of the effects that have been observed in different cloudiness and convective conditions and gained understanding of the important processes and implications of the cloud effects on momentum transport.</p>


2020 ◽  
Vol 13 (8) ◽  
pp. 4589-4600 ◽  
Author(s):  
Boming Liu ◽  
Jianping Guo ◽  
Wei Gong ◽  
Lijuan Shi ◽  
Yong Zhang ◽  
...  

Abstract. Wind profiles are fundamental to the research and applications in boundary layer meteorology, air quality and numerical weather prediction. Large-scale wind profile data have been previously documented from network observations in several countries, such as Japan, the USA, various European countries and Australia, but nationwide wind profiles observations are poorly understood in China. In this study, the salient characteristics and performance of wind profiles as observed by the radar wind profiler network of China are investigated. This network consists of more than 100 stations instrumented with 1290 MHz Doppler radar designed primarily for measuring vertically resolved winds at various altitudes but mainly in the boundary layer. It has good spatial coverage, with much denser sites in eastern China. The wind profiles observed by this network can provide the horizontal wind direction, horizontal wind speed and vertical wind speed for every 120 m interval within the height of 0 to 3 km. The availability of the radar wind profiler network has been investigated in terms of effective detection height, data acquisition rate, data confidence and data accuracy. Further comparison analyses with reanalysis data indicate that the observation data at 89 stations are recommended and 17 stations are not recommended. The boundary layer wind profiles from China can provide useful input to numerical weather prediction systems at regional scales.


Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


Tellus ◽  
1967 ◽  
Vol 19 (4) ◽  
pp. 560-565 ◽  
Author(s):  
M. A. Estoque
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document