scholarly journals Time-restricted feeding promotes skeletal muscle function in diet- and genetic-induced obesity through shared and unique pathways

Author(s):  
Christopher Livelo ◽  
Yiming Guo ◽  
Shweta Varshney ◽  
Farah Abou Daya ◽  
Hiep Le ◽  
...  

Abstract Obesity caused by genetic predisposition, a lifestyle of calorie-dense diets and/or circadian disruption can result in complications including metabolic syndrome, cardiovascular disease, and compromised muscle function. By employing time-restricted feeding (TRF), where daily feeding was limited to 12 hours during the day, we observed improved skeletal muscle function compared to ad libitum feeding (ALF). This was observed in both diet-induced obesity (DIO) and genetic-induced obesity (GIO) in a Drosophila melanogaster (fruit fly) model. We evaluated the mechanistic basis of TRF-mediated benefits by utilizing muscle transcriptomic data of indirect flight muscle (IFM) followed by genetic validations, cytological and biochemical evidences. Significant upregulation of glycine N methyltransferase (Gnmt), sarcosine dehydrogenase (Sardh), CG5955 and downregulation of diacylglycerol o-acyltransferase 2 (Dgat2) were commonly induced by TRF intervention under both obese conditions. Moreover, genetic inhibition of Gnmt, Sardh and CG5955 leads to skeletal muscle dysfunction, aberrant lipid accumulation and loss of TRF-mediated benefits. However, skeletal muscle-specific knockdown (KD) of Dgat2 retained muscle function during aging, a result that mimics TRF-mediated benefits. Furthermore, de novo purine biosynthesis appeared to be upregulated specifically in the DIO model under TRF which led to increased ATP levels resulting in improved muscle performance. Additionally, genes associated with AMP kinase (AMPK) signaling, glycogen metabolism, glycolysis, tricarboxylic acid (TCA) cycle and electron transport chain (ETC) signaling were specifically upregulated in GIO model under TRF. TRF mediated benefits in GIO via activation of AMPK, which led to increased ATP levels. Altogether, we identify the shared and distinct pathways in the regulation of muscle function under TRF, which may aid further research and alternative therapeutic avenues that focus on combating comorbidities linked with obesity.

2013 ◽  
Vol 52 (1) ◽  
pp. R107-R123 ◽  
Author(s):  
Viral Chikani ◽  
Ken K Y Ho

Skeletal muscle is a target tissue of GH. Based on its anabolic properties, it is widely accepted that GH enhances muscle performance in sports and muscle function in the elderly. This paper critically reviews information on the effects of GH on muscle function covering structure, protein metabolism, the role of IGF1 mediation, bioenergetics and performance drawn from molecular, cellular and physiological studies on animals and humans. GH increases muscle strength by enhancing muscle mass without affecting contractile force or fibre composition type. GH stimulates whole-body protein accretion with protein synthesis occurring in muscular and extra-muscular sites. The energy required to power muscle function is derived from a continuum of anaerobic and aerobic sources. Molecular and functional studies provide evidence that GH stimulates the anaerobic and suppresses the aerobic energy system, in turn affecting power-based functional measures in a time-dependent manner. GH exerts complex multi-system effects on skeletal muscle function in part mediated by the IGF system.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jesús E. Villanueva ◽  
Christopher Livelo ◽  
Adriana S. Trujillo ◽  
Sahaana Chandran ◽  
Brendon Woodworth ◽  
...  

Abstract Pathological obesity can result from genetic predisposition, obesogenic diet, and circadian rhythm disruption. Obesity compromises function of muscle, which accounts for a majority of body mass. Behavioral intervention that can counteract obesity arising from genetic, diet or circadian disruption and can improve muscle function holds untapped potential to combat the obesity epidemic. Here we show that Drosophila melanogaster (fruit fly) subject to obesogenic challenges exhibits metabolic disease phenotypes in skeletal muscle; sarcomere disorganization, mitochondrial deformation, upregulation of Phospho-AKT level, aberrant intramuscular lipid infiltration, and insulin resistance. Imposing time-restricted feeding (TRF) paradigm in which flies were fed for 12 h during the day counteracts obesity-induced dysmetabolism and improves muscle performance by suppressing intramuscular fat deposits, Phospho-AKT level, mitochondrial aberrations, and markers of insulin resistance. Importantly, TRF was effective even in an irregular lighting schedule mimicking shiftwork. Hence, TRF is an effective dietary intervention for combating metabolic dysfunction arising from multiple causes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Homer-Bouthiette ◽  
L. Xiao ◽  
Marja M. Hurley

AbstractFibroblast growth factor 2 (FGF2) is important in musculoskeletal homeostasis, therefore the impact of reduction or Fgf2 knockout on skeletal muscle function and phenotype was determined. Gait analysis as well as muscle strength testing in young and old WT and Fgf2KO demonstrated age-related gait disturbances and reduction in muscle strength that were exacerbated in the KO condition. Fgf2 mRNA and protein were significantly decreased in skeletal muscle of old WT compared with young WT. Muscle fiber cross-sectional area was significantly reduced with increased fibrosis and inflammatory infiltrates in old WT and Fgf2KO vs. young WT. Inflammatory cells were further significantly increased in old Fgf2KO compared with old WT. Lipid-related genes and intramuscular fat was increased in old WT and old Fgf2KO with a further increase in fibro-adipocytes in old Fgf2KO compared with old WT. Impaired FGF signaling including Increased β-Klotho, Fgf21 mRNA, FGF21 protein, phosphorylated FGF receptors 1 and 3, was observed in old WT and old Fgf2KO. MAPK/ ERK1/2 was significantly increased in young and old Fgf2KO. We conclude that Fgf2KO, age-related decreased FGF2 in WT mice, and increased FGF21 in the setting of impaired Fgf2 expression likely contribute to impaired skeletal muscle function and sarcopenia in mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Z. Darabseh ◽  
Thomas M. Maden-Wilkinson ◽  
George Welbourne ◽  
Rob C. I. Wüst ◽  
Nessar Ahmed ◽  
...  

AbstractCigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p < 0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p < 0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p < 0.05) in smokers. IL-4, IL-6, IL-10 and IL-12p70 had returned towards levels seen in non-smokers after 14 days smoking cessation (p < 0.05), and IL-2 and TNF-α showed a similar pattern but had not yet fully returned to levels seen in non-smokers. Haemoglobin, haematocrit, eosinophil count, AGEs, MDA and TAS did not significantly change with smoking cessation. Two weeks of smoking cessation was accompanied with an improved muscle fatigue resistance and a reduction in low-grade systemic inflammation in smokers.


2009 ◽  
Vol 602 (1) ◽  
pp. 143-147 ◽  
Author(s):  
Benoît Giannesini ◽  
Marguerite Izquierdo ◽  
Yann Le Fur ◽  
Patrick J. Cozzone ◽  
Marc Verleye ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Michael D. Tarpey ◽  
Adam J. Amorese ◽  
Elizabeth R. LaFave ◽  
Everett C. Minchew ◽  
Kelsey H. Fisher-Wellman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document