scholarly journals Development and Performance Evaluation of TaqMan Real-time Fluorescence Quantitative Methylation Specific PCR for Detecting Methylation Level of PER2

Author(s):  
Huihui Jiang ◽  
Xin Yang ◽  
Miaomiao Mi ◽  
Xiaonan Wei ◽  
Hongyuan Wu ◽  
...  

Abstract Background: PER2 gene methylation is closely related to the occurrence and progress of some cancers, but there is no method to quantitatively detect PER2 methylation in conventional laboratories. So, we established a TaqMan real-time fluorescence quantitative methylation specific PCR (TaqMan real-time FQ-MSP) assay and use it for quantitative detection of PER2 methylation in leukemia patients. Methods: According to the PER2 sequence searched by GenBank, a CpG sequence enrichment region of the PER2 gene promoter was selected, and the methylated and unmethylated target sequences were designed according to the law of bisulfite conversion of DNA to construct PER2 methylation positive and negative reference materials. Specific primers and probe were designed. The reference materials were continuously diluted into gradient samples by 10-fold ratio to evaluate the analytical sensitivity, specificity,accuracy and reproducibility of the method, and the analytical sensitivity of TaqMan real-time FQ-MSP assay was compared with that of the conventional MSP assay. At the same time, the new-established TaqMan real-time FQ-MSP assay and the conventional MSP assay were used to detect the PER2 methylation level of 81 patients with leukemia, and the samples with inconsistent detection results of the two assays were sent to pyromethylation sequencing to evaluate the clinical detection performance .Results: The minimum detection limit of TaqMan real-time FQ-MSP assay for detecting PER2 methylation level established in this study was 6 copies/uL, and the coefficient of variation(CV) of intra-assay and inter-assay was less than 3%. Compared with the conventional MSP assay, it has higher analytical sensitivity. For the samples with inconsistent detection results, the results of pyrosequencing and TaqMan real-time FQ-MSP assay are consistent. Conclusion: TaqMan real-time FQ-MSP assay of PER2 methylation established in this study has high detection performance and can be used for the detection of clinical samples.

2005 ◽  
Vol 71 (7) ◽  
pp. 3911-3916 ◽  
Author(s):  
Mark G. Wise ◽  
Gregory R. Siragusa

ABSTRACT Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.


2010 ◽  
Vol 134 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Zhengming Gu ◽  
Jianmin Pan ◽  
Matthew J. Bankowski ◽  
Randall T. Hayden

Abstract Context.—BK virus infections among immunocompromised patients are associated with disease of the kidney or urinary bladder. High viral loads, determined by quantitative polymerase chain reaction (PCR), have been correlated with clinical disease. Objective.—To develop and evaluate a novel method for real-time PCR detection and quantification of BK virus using labeled primers. Design.—Patient specimens (n = 54) included 17 plasma, 12 whole blood, and 25 urine samples. DNA was extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Applied Science, Indianapolis, Indiana); sample eluate was PCR-amplified using the labeled primer PCR method. Results were compared with those of a user-developed quantitative real-time PCR method (fluorescence resonance energy transfer probe hybridization). Results.—Labeled primer PCR detected less than 10 copies per reaction and showed quantitative linearity from 101 to 107 copies per reaction. Analytical specificity of labeled primer PCR was 100%. With clinical samples, labeled primer PCR demonstrated a trend toward improved sensitivity compared with the reference method. Quantitative assay comparison showed an R2 value of 0.96 between the 2 assays. Conclusions.—Real-time PCR using labeled primers is highly sensitive and specific for the quantitative detection of BK virus from a variety of clinical specimens. These data demonstrate the applicability of labeled primer PCR for quantitative viral detection and offer a simplified method that removes the need for separate oligonucleotide probes.


2020 ◽  
Vol 15 (8) ◽  
pp. 601-612
Author(s):  
Bhawna Dahiya ◽  
Suman Sharma ◽  
Anish Khan ◽  
Ekta Kamra ◽  
Preeti Mor ◽  
...  

Aim: Timely and reliable diagnostic test for tuberculosis (TB) is immediately required. Attempts were made to improve the technology and diagnostic potential of real-time immuno-PCR (RT-I-PCR). Methods: We designed gold nanoparticle (GNP)-based RT-I-PCR (GNP-RT-I-PCR) assay for the detection of Mycobacterium tuberculosis CFP-10 (Rv3874) protein in clinical samples of TB patients. Results: A wide quantitative detection range of CFP-10 was found to be 0.5–5 × 104 pg/ml in bodily fluids of TB patients, which can evaluate the progression of disease. Moreover, sensitivities of 83.7 and 76.2% were observed in pulmonary (n = 49) and extrapulmonary TB (n = 42) patients, respectively, with specificities of 93.5–93.8% (n = 63). Conclusion: Conjugation of detection antibodies and oligonucleotides to functionalized GNPs of GNP-RT-I-PCR is relatively easier, compared with streptavidin-biotin/succinimidyl-4-( N-maleimidomethyl) cyclohexane-1-carboxylate system employed in RT-I-PCR. Our assay also showed better diagnostic performance than RT-I-PCR, which may provide a viable platform for the development of an efficient TB diagnostic test.


2007 ◽  
Vol 35 (8) ◽  
pp. 498-502 ◽  
Author(s):  
Robert T. Pu ◽  
Zong-Mei Sheng ◽  
Claire W. Michael ◽  
Michael G. Rhode ◽  
Douglas P. Clark ◽  
...  

2014 ◽  
Vol 25 (4) ◽  
pp. 217-221 ◽  
Author(s):  
Mohammad Rubayet Hasan ◽  
Rusung Tan ◽  
Ghada N Al-Rawahi ◽  
Eva Thomas ◽  
Peter Tilley

BACKGROUND:Bordetella pertussisinfections continue to be a major public health challenge in Canada. Polymerase chain reaction (PCR) assays to detectB pertussisare typically based on the multicopy insertion sequence IS481, which offers high sensitivity but lacks species specificity.METHODS: A novelB pertussisreal-time PCR assay based on the porin gene was tested in parallel with several previously published assays that target genes such as IS481,ptx-promoter, pertactin and a putative thialase. The assays were evaluated using a reference panel of common respiratory bacteria including differentBordetellaspecies and 107 clinical nasopharyngeal specimens. Discrepant results were confirmed by sequencing the PCR products.RESULTS: Analytical sensitivity was highest for the assay targeting the IS481element; however, the assay lacked specificity forB pertussisin the reference panel and in the clinical samples. False-positive results were also observed with assays targeting theptx-promoter and pertactin genes. A PCR assay based on the thialase gene was highly specific but failed to detect all reference strains ofB pertussis. However, a novel assay targeting the porin gene demonstrated high specificity forB pertussisboth in the reference panel and in clinical samples and, based on sequence-confirmed results, correctly predicted allB pertussis-positive cases in clinical samples. According to Probit regression analysis, the 95% detection limit of the new assay was 4 colony forming units/reaction.CONCLUSION: A novel porin assay forB pertussisdemonstrated superior performance and may be useful for improved molecular detection ofB pertussisin clinical specimens.


2009 ◽  
Vol 58 (7) ◽  
pp. 878-883 ◽  
Author(s):  
Wafa Habbal ◽  
Fawza Monem ◽  
Barbara C. Gärtner

Standardization of human cytomegalovirus (CMV) PCR is highly recommended. As primer design is essential for PCR sensitivity, this study evaluated all published CMV primer pairs to identify the most sensitive for single-round real-time PCR. PubMed (1993–2004) was searched for original papers aimed at CMV PCR. Fifty-seven papers were identified revealing 82 different primer pairs. Of these, 17 primer sets were selected for empirical study, as they were either used in real-time PCR or were evaluated comparatively by conventional PCR. After optimizing the PCR conditions, these primer sets were evaluated by real-time PCR using a SYBR Green format. Analytical sensitivities were assessed by testing the reference standard CMV strain AD169. A blast search was performed to identify mismatches with published sequences. Additionally, 60 clinical samples were tested with the three primer sets showing highest analytical sensitivity and the best match to all CMV strains. Three primer sets located in the glycoprotein B (UL55) gene region were found to be the most sensitive using strain AD169. However, two of these showed a considerable number of mismatches with clinical isolates in a blast search. Instead, two other pairs from the lower matrix phosphoprotein (UL83) gene and DNA polymerase (UL54) gene showed reasonable sensitivity and no mismatches with clinical isolates. These three pairs were further tested with clinical samples, which indicated that the two primer sets from UL55 and UL54 were the most sensitive. Interestingly, the analytical sensitivity of the PCR was inversely correlated with the size of the PCR product. In conclusion, these two primer pairs are recommended for a standardized, highly sensitive, real-time PCR.


2020 ◽  
Vol 65 (5) ◽  
pp. 321-327
Author(s):  
Nikolay Evgenievich Kushlinskii ◽  
D. O. Utkin ◽  
V. I. Loginov ◽  
E. A. Filippova ◽  
A. M. Burdennyy ◽  
...  

It was found that the proportion of microRNA genes inactivated by methylation of regulatory CpG islands is several times higher than the genes encoding proteins, which increases their attractiveness as promising markers of cancer. The aim of this work is to evaluate the clinical significance of methylation of 13 tumor-associated microRNA genes (MIR-124a-2, MIR-124a-3, MIR-125-B1, MIR-127, MIR-129-2, MIR-132, MIR-137, MIR-203a, MIR-34b/c, MIR-375, MIR-9-1, MIR-9-3, MIR-339) in 26 patients with ovarian cancer. Methylation level was evaluated by the method of methylation-specific PCR in real time. The data obtained in primary tumors (26), histologically unchanged ovarian tissues (15) and peritoneal metastases (19) were compared using a number of statistical programs. For all 13 genes, an increase in the level of methylation was revealed during the transition from unchanged tissue to primary tumors and further from primary tumors to peritoneal metastases; moreover, in the genes MIR-203a, MIR-375 and MIR-339, the level of methylation in metastases increased most significantly (in 2 and more times). A correlation was observed for the first time, showing a consistency between the increase in methylation level in some miRNA pairs, for example, MIR-129-2/MIR-132 (rs> 0,7; p <0,0001), both in primary tumors and in metastases. An analysis of microRNA gene methylation in clinical samples of ovarian cancer showed a correlation between the observed molecular changes both with the initial stages of tumor formation and with the progression and dissemination of ovarian cancer, with the presence of metastases in a large omentum and with the appearance of ascites. The revealed dependencies deepen the understanding of the mechanism of peritoneal metastasis and can be used to select new diagnostic and prognostic markers of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document