scholarly journals Comparative evaluation of published cytomegalovirus primers for rapid real-time PCR: which are the most sensitive?

2009 ◽  
Vol 58 (7) ◽  
pp. 878-883 ◽  
Author(s):  
Wafa Habbal ◽  
Fawza Monem ◽  
Barbara C. Gärtner

Standardization of human cytomegalovirus (CMV) PCR is highly recommended. As primer design is essential for PCR sensitivity, this study evaluated all published CMV primer pairs to identify the most sensitive for single-round real-time PCR. PubMed (1993–2004) was searched for original papers aimed at CMV PCR. Fifty-seven papers were identified revealing 82 different primer pairs. Of these, 17 primer sets were selected for empirical study, as they were either used in real-time PCR or were evaluated comparatively by conventional PCR. After optimizing the PCR conditions, these primer sets were evaluated by real-time PCR using a SYBR Green format. Analytical sensitivities were assessed by testing the reference standard CMV strain AD169. A blast search was performed to identify mismatches with published sequences. Additionally, 60 clinical samples were tested with the three primer sets showing highest analytical sensitivity and the best match to all CMV strains. Three primer sets located in the glycoprotein B (UL55) gene region were found to be the most sensitive using strain AD169. However, two of these showed a considerable number of mismatches with clinical isolates in a blast search. Instead, two other pairs from the lower matrix phosphoprotein (UL83) gene and DNA polymerase (UL54) gene showed reasonable sensitivity and no mismatches with clinical isolates. These three pairs were further tested with clinical samples, which indicated that the two primer sets from UL55 and UL54 were the most sensitive. Interestingly, the analytical sensitivity of the PCR was inversely correlated with the size of the PCR product. In conclusion, these two primer pairs are recommended for a standardized, highly sensitive, real-time PCR.

2016 ◽  
Vol 29 (4) ◽  
pp. 499-507 ◽  
Author(s):  
Amaresh Das ◽  
Gordon Ward ◽  
Andre Lowe ◽  
Lizhe Xu ◽  
Karen Moran ◽  
...  

Parapoxviruses (PaPVs) cause widespread infections in ruminants worldwide. All PaPVs are zoonotic and may infect humans after direct or indirect contact with infected animals. Herein we report the development and validation of a highly sensitive real-time PCR assay for rapid detection of PaPVs. The new assay (referred to as the RVSS assay) was specific for PaPVs only and had no cross-reactivity against other pox viruses. Using a recombinant plasmid as positive control, the analytical sensitivity of the assay was determined to be 16 genome copies of PaPV per assay. The amplification efficiency estimate (91–99%), the intra- and interassay variability estimate (standard deviation [SD]: 0.28–1.06 and 0.01–0.14, respectively), and the operator variability estimate (SD: 0.78 between laboratories and 0.28 between operators within a laboratory) were within the acceptable range. The diagnostic specificity was assessed on 100 specimens from healthy normal animals and all but 1 tested negative (99%). The diagnostic sensitivity (DSe) was assessed on 77 clinical specimens (skin/scab) from infected sheep, goats, and cattle, and all tested positive (100%). The assay was multiplexed with beta-actin as an internal positive control, and the multiplex assay exhibited the same DSe as the singleplex assay. Further characterization of the PaPV specimens by species-specific real-time PCR and nucleotide sequencing of the PCR products following conventional PCR showed the presence of Orf virus not only in sheep and goats but also in 1 bovid. The validated RVSS assay demonstrated high specificity, sensitivity, reproducibility, and ruggedness, which are critical for laboratory detection of PaPVs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244753
Author(s):  
Jeeyong Kim ◽  
Borae G. Park ◽  
Da Hye Lim ◽  
Woong Sik Jang ◽  
Jeonghun Nam ◽  
...  

Introduction The rapid and accurate diagnosis of tuberculosis (TB) is important to reduce morbidity and mortality rates and risk of transmission. Therefore, molecular detection methods such as a real-time PCR–based assay for Mycobacterium tuberculosis (MTB) have been commonly used for diagnosis of TB. Loop-mediated isothermal amplification (LAMP) assay was believed to be a simple, quick, and cost-effective isothermal nucleic acid amplification diagnostic test for infectious diseases. In this study, we designed an in-house multiplex LAMP assay for the differential detection of MTB and non-tuberculosis mycobacterium (NTM), and evaluated the assay using clinical samples. Material and methods For the multiplex LAMP assay, two sets of specific primers were designed: the first one was specific for IS6110 genes of MTB, and the second one was universal for rpoB genes of mycobacterium species including NTM. MTB was confirmed with a positive reaction with both primer sets, and NTM was identified with a positive reaction by only the second primer set without a MTB-specific reaction. Total 333 clinical samples were analyzed to evaluate the multiplex LAMP assay. Clinical samples were composed of 195 positive samples (72 MTB and 123NTM) and 138 negative samples. All samples were confirmed positivity or negativity by real-time PCR for MTB and NTM. Analytical sensitivity and specificity were evaluated for the multiplex LAMP assay in comparison with acid fast bacilli staining and the culture method. Results Of 123 NTM samples, 121 were identified as NTM and 72/72 MTB were identified as MTB by the multiplex LAMP assay. False negative reactions were seen only in two NTM positive samples with co-infection of Candida spp. All 138 negative samples were identified as negative for MTB and NTM. Analytical sensitivity of the multiplex LAMP assay was 100% (72/72) for MTB, and 98.4% (121/123) for NTM. And the specificity of assay was 100% (138/138) for all. Conclusions Our newly designed multiplex LAMP assay for MTB and NTM showed relatively good sensitivity in comparison with previously published data to detect isolated MTB. This multiplex LAMP assay is expected to become a useful tool for detecting and differentiating MTB from NTM rapidly at an acceptable sensitivity.


Author(s):  
Suhua Xin ◽  
Hong Zhu ◽  
Chenglin Tao ◽  
Beibei Zhang ◽  
Lan Yao ◽  
...  

Salmonella has been known as an important zoonotic pathogen that can cause a variety of diseases in both animals and humans. Poultry are the main reservoir for the Salmonella serovars Salmonella Pullorum (S. Pullorum), Salmonella Gallinarum (S. Gallinarum), Salmonella Enteritidis (S. Enteritidis), and Salmonella Typhimurium (S. Typhimurium). The conventional serotyping methods for differentiating Salmonella serovars are complicated, time-consuming, laborious, and expensive; therefore, rapid and accurate molecular diagnostic methods are needed for effective detection and prevention of contamination. This study developed and evaluated a TaqMan multiplex real-time PCR assay for simultaneous detection and differentiation of the S. Pullorum, S. Gallinarum, S. Enteritidis, and S. Typhimurium. In results, the optimized multiplex real-time PCR assay was highly specific and reliable for all four target genes. The analytical sensitivity corresponded to three colony-forming units (CFUs) for these four Salmonella serovars, respectively. The detection limit for the multiplex real-time PCR assay in artificially contaminated samples was 500 CFU/g without enrichment, while 10 CFU/g after pre-enrichment. Moreover, the multiplex real-time PCR was applied to the poultry clinical samples, which achieved comparable results to the traditional bacteriological examination. Taken together, these results indicated that the optimized TaqMan multiplex real-time PCR assay will be a promising tool for clinical diagnostics and epidemiologic study of Salmonella in chicken farm and poultry products.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248042
Author(s):  
Woong Sik Jang ◽  
Da Hye Lim ◽  
Jung Yoon ◽  
Ahran Kim ◽  
Minsup Lim ◽  
...  

A newly identified coronavirus, designated as severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), has spread rapidly from its epicenter in China to more than 150 countries across six continents. In this study, we have designed three reverse-transcription loop-mediated isothermal amplification (RT-LAMP) primer sets to detect the RNA-dependent RNA polymerase (RdRP), Envelope (E) and Nucleocapsid protein (N) genes of SARS CoV-2. For one tube reaction, the detection limits for five combination SARS CoV-2 LAMP primer sets (RdRP/E, RdRP/N, E/N, RdRP/E/N and RdRP/N/Internal control (actin beta)) were evaluated with a clinical nasopharyngeal swab sample. Among the five combination, the RdRP/E and RdRP/N/IC multiplex LAMP assays showed low detection limits. The sensitivity and specificity of the RT-LAMP assay were evaluated and compared to that of the widely used Allplex™ 2019-nCoV Assay (Seegene, Inc., Seoul, South Korea) and PowerChek™ 2019-nCoV Real-time PCR kit (Kogenebiotech, Seoul, South Korea) for 130 clinical samples from 91 SARS CoV-2 patients and 162 NP specimens from individuals with (72) and without (90) viral respiratory infections. The multiplex RdRP (FAM)/N (CY5)/IC (Hex) RT-LAMP assay showed comparable sensitivities (RdRP: 93.85%, N: 94.62% and RdRP/N: 96.92%) to that of the Allplex™ 2019-nCoV Assay (100%) and superior to those of PowerChek™ 2019-nCoV Real-time PCR kit (RdRP: 92.31%, E: 93.85% and RdRP/E: 95.38%).


2012 ◽  
Vol 15 (3) ◽  
pp. 411-416 ◽  
Author(s):  
E. Osińska ◽  
A. Golke ◽  
A. Słońska ◽  
J. Cymerys ◽  
M.W. Bańbura ◽  
...  

Abstract Equid herpesvirus type 2 (EHV-2) together with equid herpesvirus type 5 are members of Gammaherpesvirinae subfamily, genus Rhadinovirus. EHV-2 is one of major agents causing diseases of horses common worldwide. A possible role of EHV-2 in reactivating latent equid herpesvirus type-1 has been suggested, because reactivation of latent EHV-1 was always accompanied by EHV-2 replication. Variety techniques, including cell culture, PCR and its modifications, have been used to diagnose EHV-2 infections. The aim of this study was to develop, optimize and determine specificity of real-time PCR (qPCR) for EHV-2 DNA detection using HybProbesR chemistry and to evaluate clinical samples with this method. The analytical sensitivity of assay was tested using serial dilutions of viral DNA in range between 70 and 7x105 copies/ml. The limit of detection (LOD) was calculated using probit analysis and was determined as 56 copies/ml. In further studies 20 different clinical samples were tested for the presence of EHV-2. Described in-house qPCR method detected viral DNA in 5 of 20 specimens used. The results of this work show that developed HybProbes-based real-time PCR assay is very reliable and valuable for detection and quantification of equid herpesvirus type 2 DNA in different clinical samples. The high level of sensitivity, accuracy and rapidity provided by the LightCycler 2.0 instrument are favorable for the use of this system in the detection of EHV-2 DNA in veterinary virology.


2015 ◽  
Vol 38 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Kiril Krstevski ◽  
Ivancho Naletoski ◽  
Dine Mitrov ◽  
Slavcho Mrenoshki ◽  
Iskra Cvetkovikj ◽  
...  

AbstractBacteria from the genus Brucella are causative agents of brucellosis - a zoonotic disease which affects many wild and domestic animal species and humans. Taking into account the significant socio-economic and public health impact of brucellosis, its control is of great importance for endemic areas. The chosen control strategy could be successful only if adapted to the current epidemiological situation. This implies that a choice of appropriate diagnostic procedures for detection and typing of Brucella spp. strains are of essential importance. Significant advancement of molecular techniques and their advantages compared to classical methods, give strong arguments in promotion of these techniques as a powerful tool for comprehensive diagnostics of brucellosis. Considering this, the major tasks of the study were to select and implement molecular tests for detection and genotyping Brucella spp. and evaluate their performances using DNA from cultivated brucellae (islolates) and limited number of tissue samples from seropositive animals. The obtained results confirmed that implemented real time PCR for Brucella spp. detection, as well as MLVA-16 used for genotyping, have excellent analytical sensitivity (4.2 fg of Brucella DNA were successfully detected and genotyped). Furthermore, compared to bacteriological cultivation of Brucella spp., real time PCR and MLVA-16 protocols showed superior diagnostic sensitivity and detected Brucella DNA in tissues from which Brucella could not be cultivated. Based on the summarized study results, we propose a diagnostic algorithm for detection and genotyping of Brucella spp. bacteria. Routine use of proposed diagnostic algorithm will improve the effectiveness of infection confirmation and help for accurate evaluation of epidemiological situation.


2021 ◽  
Vol 9 (5) ◽  
pp. 1031
Author(s):  
Roberto Zoccola ◽  
Alessia Di Blasio ◽  
Tiziana Bossotto ◽  
Angela Pontei ◽  
Maria Angelillo ◽  
...  

Mycobacterium chimaera is an emerging pathogen associated with endocarditis and vasculitis following cardiac surgery. Although it can take up to 6–8 weeks to culture on selective solid media, culture-based detection remains the gold standard for diagnosis, so more rapid methods are urgently needed. For the present study, we processed environmental M. chimaera infected simulates at volumes defined in international guidelines. Each preparation underwent real-time PCR; inoculates were placed in a VersaTREK™ automated microbial detection system and onto selective Middlebrook 7H11 agar plates. The validation tests showed that real-time PCR detected DNA up to a concentration of 10 ng/µL. A comparison of the isolation tests showed that the PCR method detected DNA in a dilution of ×102 CFU/mL in the bacterial suspensions, whereas the limit of detection in the VersaTREK™ was <10 CFU/mL. Within less than 3 days, the VersaTREK™ detected an initial bacterial load of 100 CFU. The detection limit did not seem to be influenced by NaOH decontamination or the initial water sample volume; analytical sensitivity was 1.5 × 102 CFU/mL; positivity was determined in under 15 days. VersaTREK™ can expedite mycobacterial growth in a culture. When combined with PCR, it can increase the overall recovery of mycobacteria in environmental samples, making it potentially applicable for microbial control in the hospital setting and also in environments with low levels of contamination by viable mycobacteria.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Zhang ◽  
Chunyang Dai ◽  
Huiyan Wang ◽  
Yong Gao ◽  
Tuantuan Li ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is posing a serious threat to global public health. Reverse transcriptase real-time quantitative polymerase chain reaction (qRT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. Due to technical limitations, the reported positive rates of qRT-PCR assay of throat swab samples vary from 30 to 60%. Therefore, the evaluation of alternative strategies to overcome the limitations of qRT-PCR is required. A previous study reported that one-step nested (OSN)-qRT-PCR revealed better suitability for detecting SARS-CoV-2. However, information on the analytical performance of OSN-qRT-PCR is insufficient. Method In this study, we aimed to analyze OSN-qRT-PCR by comparing it with droplet digital PCR (ddPCR) and qRT-PCR by using a dilution series of SARS-CoV-2 pseudoviral RNA and a quality assessment panel. The clinical performance of OSN-qRT-PCR was also validated and compared with ddPCR and qRT-PCR using specimens from COVID-19 patients. Result The limit of detection (copies/ml) of qRT-PCR, ddPCR, and OSN-qRT-PCR were 520.1 (95% CI: 363.23–1145.69) for ORF1ab and 528.1 (95% CI: 347.7–1248.7) for N, 401.8 (95% CI: 284.8–938.3) for ORF1ab and 336.8 (95% CI: 244.6–792.5) for N, and 194.74 (95% CI: 139.7–430.9) for ORF1ab and 189.1 (95% CI: 130.9–433.9) for N, respectively. Of the 34 clinical samples from COVID-19 patients, the positive rates of OSN-qRT-PCR, ddPCR, and qRT-PCR were 82.35% (28/34), 67.65% (23/34), and 58.82% (20/34), respectively. Conclusion In conclusion, the highly sensitive and specific OSN-qRT-PCR assay is superior to ddPCR and qRT-PCR assays, showing great potential as a technique for detection of SARS-CoV-2 in patients with low viral loads.


2021 ◽  
Vol 9 (8) ◽  
pp. 1610
Author(s):  
Christian Klotz ◽  
Elke Radam ◽  
Sebastian Rausch ◽  
Petra Gosten-Heinrich ◽  
Toni Aebischer

Giardiasis in humans is a gastrointestinal disease transmitted by the potentially zoonotic Giardia duodenalis genotypes (assemblages) A and B. Small wild rodents such as mice and voles are discussed as potential reservoirs for G. duodenalis but are predominantly populated by the two rodent species Giardia microti and Giardia muris. Currently, the detection of zoonotic and non-zoonotic Giardia species and genotypes in these animals relies on cumbersome PCR and sequencing approaches of genetic marker genes. This hampers the risk assessment of potential zoonotic Giardia transmissions by these animals. Here, we provide a workflow based on newly developed real-time PCR schemes targeting the small ribosomal RNA multi-copy gene locus to distinguish G. muris, G. microti and G. duodenalis infections. For the identification of potentially zoonotic G. duodenalis assemblage types A and B, an established protocol targeting the single-copy gene 4E1-HP was used. The assays were specific for the distinct Giardia species or genotypes and revealed an analytical sensitivity of approximately one or below genome equivalent for the multi-copy gene and of about 10 genome equivalents for the single-copy gene. Retesting a biobank of small rodent samples confirmed the specificity. It further identified the underlying Giardia species in four out of 11 samples that could not be typed before by PCR and sequencing. The newly developed workflow has the potential to facilitate the detection of potentially zoonotic and non-zoonotic Giardia species in wild rodents.


Sign in / Sign up

Export Citation Format

Share Document