scholarly journals The genus Dermoloma is more diverse than expected and forms a monophyletic lineage in the Tricholomataceae

2020 ◽  
Author(s):  
Marisol Sánchez-García ◽  
Katarína Adamčíková ◽  
Pierre-Arthur Moreau ◽  
Alfredo Vizzini ◽  
Soňa Jančovičová ◽  
...  

Abstract We present the first phylogenetic evaluation of the genus Dermoloma , which is resolved as monophyletic and closely related to Pseudotricholoma , a poorly-known Dermoloma -like lineage within the family Tricholomataceae. The position of Dermoloma is confirmed by the placement of the type species, D. cuneifolium , represented by multiple samples including the neotype. Based on our phylogenetic analyses, we recognised 25 European operational taxonomic units (OTUs), but could only assign species names to ten of them based on ex-type sequences. Furthermore, only five additional published Dermoloma names of uncertain status are available for the remaining 16 potential European species, thus demonstrating an unexpected amount of taxonomic diversity. Samples from Europe and North America seem to be endemic on a continental scale. North American samples formed six unique OTUs, but only one could be reliably named, D. hymenocephalum . Dermoloma is morphologically defined by basidiomata with brown, grey and white colours with a farinaceous odour and a pluristratous hymeniderm type of pileipellis. Our phylogenetic analyses support the subdivision of the genus into two subgenera and four sections, species with inamyloid basidiospores are placed in subg. Dermoloma and those with amyloid basidiospores in subg. Amylospora . Both subgenera are further divided in two sections. The analysis of spore morphology shows that sect. Conica of subg. Dermoloma and sect. Nigrescentia of subg. Amylospora have a very distinctive spore shape. Sect. Atrobrunnea of subg. Amylospora showed relatively high variability of spores among species, but spores of sect. Dermoloma were similar and not useful for species discrimination.

Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2186-2193 ◽  
Author(s):  
Mareike Wenning ◽  
Franziska Breitenwieser ◽  
Christopher Huptas ◽  
Etienne Doll ◽  
Benedikt Bächler ◽  
...  

Eight facultatively anaerobic rod-shaped bacteria were isolated from raw milk and two other dairy products. Results of phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates are placed in a distinct lineage within the family Propionibacteriaceae with Propioniciclava sinopodophylli and Propioniciclava tarda as the closest relatives (94.6 and 93.5 % similarity, respectively). The cell-wall peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid and was of the A1γ type (meso-DAP-direct). The major cellular fatty acid was anteiso-C15 : 0 and the major polar lipids were diphosphatidylglycerol, phosphatidyglycerol and three unidentified glycolipids. The quinone system contained predominantly menaquinone MK-9(H4). The G+C content of the genomic DNA of strain VG341T was 67.7 mol%. The whole-cell sugar pattern contained ribose, rhamnose, arabinose and galactose. On the basis of phenotypic and genetic data, eight strains (VG341T, WS4684, WS4769, WS 4882, WS4883, WS4901, WS4902 and WS4904) are proposed to be classified as members of a novel species in a new genus of the family Propionibacteriaceae , for which the name Brevilactibacter flavus gen. nov., sp. nov. is proposed. The type strain is VG341T (=WS4900T=DSM 100885T=LMG 29089T) and seven additional strains are WS4684, WS4769, WS4882, WS4883, WS4901, WS4902 and WS4904. Furthermore, we propose the reclassification of P. sinopodophylli as Brevilactibacter sinopodophylli comb. nov.


MycoKeys ◽  
2020 ◽  
Vol 74 ◽  
pp. 17-74
Author(s):  
Martina Réblová ◽  
Jana Nekvindová ◽  
Jacques Fournier ◽  
Andrew N. Miller

The Chaetosphaeriaceae are a diverse group of pigmented, predominantly phialidic hyphomycetes comprised of several holomorphic genera including Chaetosphaeria, the most prominent genus of the family. Although the morphology of the teleomorphs of the majority of Chaetosphaeria is rather uniform, their associated anamorphs primarily exhibit the variability and evolutionary change observed in the genus. An exception from the morphological monotony among Chaetosphaeria species is a group characterised by scolecosporous, hyaline to light pink, multiseptate, asymmetrical ascospores and a unique three-layered ascomatal wall. Paragaeumannomyces sphaerocellularis, the type species of the genus, exhibits these morphological traits and is compared with similar Chaetosphaeria with craspedodidymum- and chloridium-like synanamorphs. Morphological comparison and phylogenetic analyses of the combined ITS-28S sequences of 35 isolates and vouchers with these characteristics revealed a strongly-supported, morphologically well-delimited clade in the Chaetosphaeriaceae containing 16 species. The generic name Paragaeumannomyces is applied to this monophyletic clade; eight new combinations and five new species, i.e. P. abietinussp. nov., P. eleganssp. nov., P. granulatussp. nov., P. sabinianussp. nov. and P. smokiensissp. nov., are proposed. A key to Paragaeumannomyces is provided. Using morphology, cultivation studies and phylogenetic analyses of ITS and 28S rDNA, two additional new species from freshwater and terrestrial habitats, Codinaea paniculatasp. nov. and Striatosphaeria castaneasp. nov., are described in the family. A codinaea-like anamorph of S. castanea forms conidia with setulae at each end in axenic culture; this feature expands the known morphology of Striatosphaeria. A chaetosphaeria-like teleomorph is experimentally linked to Dendrophoma cytisporoides, a sporodochial hyphomycete and type species of Dendrophoma, for the first time.


2021 ◽  
Vol 106 ◽  
pp. 325-339
Author(s):  
Shirley A. Graham ◽  
Peter W. Inglis ◽  
Taciana B. Cavalcanti

Crenea Aubl. (Lythraceae) is a ditypic genus of subshrubs occurring in mangrove vegetation on the coasts of northern South America. Phylogenetic analyses based on morphology have offered unresolved and conflicting phylogenetic positions for the genus in the family. This study presents the first molecular sequences for Crenea, from nrITS, rbcL, trnL, trnL-F, and matK regions. Molecular phylogenetic analyses find full support for Crenea within Ammannia L., a relationship not previously recognized. Ammannia is a globally distributed genus of terrestrial to amphibious herbs mostly occurring in freshwater marshes and wetlands. It was recently reconfigured based on phylogenetic evidence to include the genera Nesaea Comm. ex Kunth and Hionanthera A. Fern. & Diniz. The transfer of Crenea to Ammannia further extends the morphological, ecological, and biogeographical diversity of Ammannia and provides the final evidence defining Ammannia as a monophyletic lineage of the Lythraceae. A revised circumscription of Ammannia s.l. adds several new morphological character states and the first species in the genus restricted to mangrove vegetation. Two changes in taxonomic status are made: Ammannia maritima (Aubl.) S. A. Graham, P. W. Inglis, & T. B. Cavalc., comb. nov., and Ammannia patentinervius (Koehne) S. A. Graham, P. W. Inglis, & T. B. Cavalc., comb. nov. The new combinations are described, a list of exsiccatae examined is provided, and the effects of the reconfiguration to the morphology and biogeography of the genus are detailed.


Author(s):  
Renju Liu ◽  
Qiliang Lai ◽  
Li Gu ◽  
Peisheng Yan ◽  
Zongze Shao

A novel Gram-stain-negative, aerobic, gliding, rod-shaped and carotenoid-pigmented bacterium, designated A20-9T, was isolated from a microbial consortium of polyethylene terephthalate enriched from a deep-sea sediment sample from the Western Pacific. Growth was observed at salinities of 1–8 %, at pH 6.5–8 and at temperatures of 10–40 °C. The results of phylogenetic analyses based on the genome indicated that A20-9T formed a monophyletic branch affiliated to the family Schleiferiaceae , and the 16S rRNA gene sequences exhibited the maximum sequence similarity of 93.8 % with Owenweeksia hongkongensis DSM 17368T, followed by similarities of 90.4, 90.1 and 88.8 % with Phaeocystidibacter luteus MCCC 1F01079T, Vicingus serpentipes DSM 103558T and Salibacter halophilus MCCC 1K02288T, respectively. Its complete genome size was 4 035 598 bp, the genomic DNA G+C content was 43.2 mol%. Whole genome comparisons indicated that A20-9T and O. hongkongensis DSM 17368T shared 67.8 % average nucleotide identity, 62.7 % average amino acid identity value, 46.6% of conserved proteins and 17.8 % digital DNA–DNA hybridization identity. A20-9T contained MK-7 as the major respiratory quinone. Its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospatidylcholine; and the major fatty acids were iso-C15 : 0 (37.5 %), iso-C16 : 0 3-OH (12.4 %), and summed feature 3 (C16 : 1ω7c /C16 : 1ω6c, 11.6 %). Combining the genotypic and phenotypic data, A20-9T could be distinguished from the members of other genera within the family Schleiferiaceae and represents a novel genus, for which the name Croceimicrobium hydrocarbonivorans gen. nov., sp. nov. is proposed. The type strain is A20-9T (=MCCC 1A17358T =KCTC 72878T).


1998 ◽  
Vol 88 (8) ◽  
pp. 782-787 ◽  
Author(s):  
Drake C. Stenger ◽  
Jeffrey S. Hall ◽  
Il-Ryong Choi ◽  
Roy French

The complete nucleotide sequence of wheat streak mosaic virus (WSMV) has been determined based on complementary DNA clones derived from the 9,384-nucleotide (nt) RNA of the virus. The genome of WSMV has a 130-nt 5′ leader and 149-nt 3′-untranslated region and is polyadenylated at the 3′ end. WSMV RNA encodes a single polyprotein of 3,035 amino acid residues and has a deduced genome organization typical for a member of the family Potyviridae (5′-P1/HC-Pro/P3/6K1/CI/6K2/VPg-NIa/NIb/CP-3′). Because WSMV shares with ryegrass mosaic virus (RGMV) the biological property of transmission by eriophyid mites, WSMV has been assigned to the genus Rymovirus, of which RGMV is the type species. Phylogenetic analyses were conducted with complete polyprotein or NIb protein sequences of 11 members of the family Potyviridae, including viruses of monocots or dicots and viruses transmitted by aphids, whiteflies, and mites. WSMV and the monocot-infecting, mite-transmitted brome streak mosaic virus (BrSMV) are sister taxa and share a most recent common ancestor with the whitefly-transmitted sweet potato mild mottle virus, the type species of the proposed genus “Ipomovirus.” In contrast, RGMV shares a most recent common ancestor with aphid-transmitted species of the genus Potyvirus. These results indicate that WSMV and BrSMV should be classified within a new genus of the family Potyviridae and should not be considered species of the genus Rymovirus.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2858-2864 ◽  
Author(s):  
Teresa Lucena ◽  
María A. Ruvira ◽  
Esperanza Garay ◽  
M. Carmen Macián ◽  
David R. Arahal ◽  
...  

Strain R46T, a marine alphaproteobacterium, was isolated from Mediterranean seawater at Malvarrosa beach, Valencia, Spain. It is an aerobic chemo-organotrophic, mesophilic and slightly halophilic organism, with complex ionic requirements. Phylogenetic analyses based on the 16S rRNA and gyrB gene sequences showed that strain R46T formed a separate branch within the family Rhodobacteraceae , bearing similarities below 94.7 and 80.3 %, respectively, to any other recognized species. It contained Q10 as the predominant isoprenoid quinone and C18 : 1ω7c/C18 : 1ω6c as the major cellular fatty acid. Phosphatidylglycerol was the only identified polar lipid, although other lipids were also detected. The DNA G+C content of the genomic DNA was 61.3 mol%. On the basis of extensive phenotypic and phylogenetic comparative analysis, it is concluded that the strain represents a novel genus and species, for which the name Actibacterium mucosum gen. nov., sp. nov. is proposed. The type strain of the type species is Actibacterium mucosum R46T ( = CECT 7668T = KCTC 23349T).


Holzforschung ◽  
2018 ◽  
Vol 72 (4) ◽  
pp. 337-345 ◽  
Author(s):  
Yu Song ◽  
Xin Yao ◽  
Bing Liu ◽  
Yunhong Tan ◽  
Richard T. Corlett

AbstractAlseodaphneis a genus of timber trees (ca. 40 spp.) belonging to thePerseagroup of the Lauraceae. It is widely distributed in tropical Asia, but is often confused withDehaasiaandNothaphoebe, and the systematics of the genus is unclear. Here, the complete chloroplast genome sequences ofA. semecarpifoliawill be reported, the type species ofAlseodaphne, and two China-endemic species,A. gracilisandA. huanglianshanensis. The three plastomes were 153 051 bp, 153 099 bp and 153 070 bp, respectively. Comparative genomic analyses indicate that the threeAlseodaphneplastomes have similar genome size and those are very different with previously published plastomes of Lauraceae in length. The length difference is directly caused by inverted repeats expansion/contraction. Four highly variable loci includingpsbD-trnM,ndhF-rpl32,rpl32-trnLandycf1among the threeAlseodaphnespecies were identified as useful plastid candidate barcodes forAlseodaphneand Lauraceae species. Phylogenetic analyses based on 12 complete plastomes of Lauraceae species confirm a monophyleticPerseagroup comprising species ofAlseodaphne,Phoebe,PerseaandMachilus.


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2363-2370 ◽  
Author(s):  
Hyangmi Kim ◽  
Doo-Sang Park ◽  
Hyun-Woo Oh ◽  
Kang Hyun Lee ◽  
Dong-Ho Chung ◽  
...  

Strains RU-16T, RU-28, RU-04T and PU-02T were isolated from the gut of the African mole cricket, Gryllotalpa africana. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belonged to the family Microbacteriaceae . All four strains were most closely related to Curtobacterium ginsengisoli DCY26T (below 97 % 16S rRNA gene sequence similarity). These isolates were Gram-stain-positive, motile (by gliding), rod-shaped and exhibited ivory-coloured colonies. Their chemotaxonomic properties included MK-11 as the major respiratory quinone, ornithine as the cell-wall diamino acid, acetyl as the acyl type of the peptidoglycan, cyclohexyl-C17 : 0 as the major fatty acid and phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, we propose a new genus in the family Microbacteriaceae , Gryllotalpicola gen. nov., with three novel species, Gryllotalpicola daejeonensis sp. nov. (type strain RU-04T  = KCTC 13809T  = JCM 17590T), Gryllotalpicola koreensis sp. nov. (type strain RU-16T  = KCTC 13810T  = JCM 17591T) and Gryllotalpicola kribbensis sp. nov. (type strain PU-02T  = KCTC 13808T  = JCM 17593T). Gryllotalpicola koreensis is the type species of the genus. Additionally, we propose that Curtobacterium ginsengisoli should be reclassified in the genus as Gryllotalpicola ginsengisoli comb. nov. (type strain DCY26T  = KCTC 13163T  = JCM 14773T).


Sign in / Sign up

Export Citation Format

Share Document