scholarly journals Histopathological and Radiographical Evaluation of Caprine Demineralized Bone Matrix in a Critical Ulnar Defect in a Rabbit Model

Author(s):  
Olawale Alimi Alimi ◽  
Adamu Abdul Abuabakar ◽  
Abubakar Sadiq Yakubu ◽  
Sani Abdullahi Shehu ◽  
Salman Zubairu Abdulkadir

Abstract Background: Caprine species satisfy the conditions of an ideal donor animal when compared to bovine species that has been extensively studied and commercialized for bone xenograft. Histopathological and radiological evaluations of caprine demineralized bone matrix (CDBM) were therefore carried out for fracture healing properties for its possible use in bone grafting procedures. Materials and Methods: Twenty-four rabbits were used for this study and were divided randomly into three groups of eight (n=8) rabbits each. Critical bone defect was created on the ulnar diaphysis under xylazine-ketamine anaesthesia for autogenous bone graft (ABG) group, CDBM group and the last group was left unfilled as negative control (NC). Immediate post-grafting radiograph was taken and repeated on days 14, 28, 42 and 56 to monitor the evidence of radiographic healing. The animals were euthanized on day 56 and defect sites were harvested for histopathology. Results: There was a progressive evidence of radiographic healing and bone formation in all the groups with significance difference (P=0.0064). When compared with ABG, NC differ significantly (P<0.0001) whereas the CDBM did not differ significantly (P=0.6765). The histopathology sections of ABG and CDBM showed normal bone tissue while the NC section was predominated by fibrous connective tissue. There was therefore an overall significant difference (P=0.0001) in which CDBM did not differ from ABG (P=0.2946) while NC did (P=0.0005). Conclusion: The ABG and CDBM groups showed a similar healing effect in the critical bone defect. Therefore, CDBM could be used as an effective alternative to ABG in orthopaedics to circumvent the limitations and complications associated with it. Level of Evidence: Not applicable.

2017 ◽  
Vol 3 (6) ◽  
pp. 344 ◽  
Author(s):  
Ferdiansyah Ferdiansyah ◽  
Dwikora Novembri Utomo ◽  
Heri Suroto

Bone defect remains a big challenge for orthopedic surgeon. Bone grafting nowadays become the second common transplantation after blood transfusion. Autogenous bone graft is the gold standard in treatment of bone defect, but it’s source limitation and donor site morbidity makes some surgeon were looking for allograft or xenograft. There are some issues with allo- and xenograft about difficulty in corporation and rejection reaction. This study explores the immunogenicity of allograft and xenograft. Keyword :  freeze-dried xenograft, freeze-dried allograft, hydroxyapatite xenograft, demineralized bone matrix xenograft.


2002 ◽  
Vol 73 (9) ◽  
pp. 1003-1009 ◽  
Author(s):  
Paola Torricelli ◽  
Milena Fini ◽  
Gianluca Giavaresi ◽  
Lia Rimondini ◽  
Roberto Giardino

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ferdiansyah Mahyudin ◽  
Dwikora Novembri Utomo ◽  
Heri Suroto ◽  
Tri Wahyu Martanto ◽  
Mouli Edward ◽  
...  

Autogenous bone graft is gold standard in treating bone defects, but it might have difficulty in corporation and rejection reaction. This study is to compare the effectiveness among freeze-dried xenograft, freeze-dried allograft, hydroxyapatite xenograft, and demineralized bone matrix xenograft as bone graft to fill bone defect in femoral diaphysis of white rabbit. Thirty male New Zealand white rabbits were distributed into five groups. Bone defect was filled correspondingly with xenograft freeze-dried cortical bovine, allograft freeze-dried cortical New Zealand white rabbit, xenograft hydroxyapatite bovine, and xenograft demineralized bone matrix bovine. No graft was used in control group. VEGF, osteoblast, and woven bone were higher in allograft freeze-dried cortical New Zealand white rabbit (mean 5.6625 (p<0.05)) and xenograft demineralized bone matrix bovine (mean 5.2475 (p<0.05)) with calcification of woven bone was already seen in week 2 in the latter group. There was a decrease of woven bone (mean 4.685 (p<0.05)) fibrous tissue (mean 41.07 (p<0.05)) in xenograft demineralized bone matrix bovine. The Immunoglobulin-G was elevated in control and all study groups but not significantly (p=0.07855). Bone healing process in xenograft demineralized bone matrix bovine is more effective than in xenograft hydroxyapatite bovine, allograft freeze-dried New Zealand white rabbit, xenograft freeze-dried cortical bovine, and control.


2008 ◽  
Vol 9 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Julio Urrutia ◽  
Nicolas Thumm ◽  
Daniel Apablaza ◽  
Felipe Pizarro ◽  
Alejandro Zylberberg ◽  
...  

Object Posterolateral spinal fusions are performed to treat different spinal disorders. Autograft continues to be the gold standard; it is, however, associated with donor site morbidity and limited sources. Allograft has been used, but has been reported to result in lower fusion rates. Demineralized bone matrix (DBM) has also been used and reportedly increases the fusion rate in a variety of critical defect models. Different forms of DBM are available, not all have been independently studied. To evaluate the effect of a xenogenic DBM added to allograft on the fusion rate of posterolateral lumbar spine arthrodesis the authors designed an experimental study comparing posterolateral fusion rate using autograft, allograft, and allograft plus a xenogenic DBM in a validated animal model. Methods A bilateral, 1-level (L4–5) intertransverse process fusion was performed in 45 male New Zealand rabbits. Iliac crest bone graft was harvested bilaterally from each rabbit. The rabbits were randomly assigned to 3 groups: Group I, Autograft, 15 rabbits; Group II, Allograft, 15 rabbits; and Group III, Allograft plus DBM in a paste form (Dynagraft). The animals were killed 8 weeks after surgery. Fusion was assessed radiographically and by manual palpation by 2 independent observers. The results were analyzed using the Fisher exact test and chi-square test. Results The fusion rate was 46.6% (7 of 15 rabbits) in the autograft group, 33.3% (5 of 15 rabbits) in the allograft group, and 33.3% (5 of 15 rabbits) in the allograft plus DBM group (p > 0.05). Conclusions Autograft produced a higher fusion rate than allograft in this spinal fusion rabbit model, but the difference was not statistically significant. Allograft plus xenogenic DBM showed the same fusion rate as allograft alone.


2019 ◽  
Author(s):  
Woo-Yong Lee ◽  
Young-Mo Kim ◽  
Hyun-Dae Shin ◽  
Deuk-Soo Hwang ◽  
Yong-Bum Joo ◽  
...  

Abstract Background The purpose of this study was to compare the histologic outcomes after rotator cuff (RC) repair between with demineralized bone matrix (DBM) augmentation and without DBM and to evaluate the role of DBM for tendon-to-bone (TB) healing in a rabbit model. Methods Twenty-six adult male New Zealand white rabbits were randomly allocated to the control group (n = 13) or the DBM group (n = 13). A chronic RC tear was generated on the right shoulder of all rabbits. In the control group, RC repair was achieved by a standard transosseous technique. In the DBM group, RC repair was achieved using the same technique, and DBM was interposed between the cuff and bone. After 8 weeks, the RC tendon entheses from all rabbits were processed for gross and histologic examination. Results In the control group, the tendon midsubstance was disorganized with randomly and loosely arranged collagen fibers and rounded fibroblastic nuclei. The TB interface was predominantly fibrous with small regions of fibrocartilage, especially mineralized fibrocartilage. In the DBM group, the tendon midsubstance appeared normal and comprised densely arranged collagen fibers, with orientated crimped collagen fibers running in the longitudinal direction of the tendon. These fibers were interspersed with elongated fibroblast nuclei. The TB interface consisted of organized collagen fibers with large quantities of fibrocartilage and mineralized fibrocartilage. Conclusion DBM augmentation at the RC-to-bone interface enhances TB healing after RC repair.


2007 ◽  
Vol 137 (2) ◽  
pp. 264-268 ◽  
Author(s):  
Jason I. Altman ◽  
Jean Anderson Eloy ◽  
Benjamin L. Hoch ◽  
Carla M. Munoz ◽  
Michael R. Shohet

OBJECTIVE: In this study, we investigate the efficacy of demineralized bone matrix (DBM) as a material for frontal sinus obliteration in a rabbit model. STUDY DESIGN AND SETTING: Twenty-four New Zealand White rabbits were divided into four groups, and the study was carried out to two time periods. Twelve rabbits underwent frontal sinus obliteration with fat autograft, and 12 rabbits underwent the procedure with DBM. At 12 weeks, six control and six study rabbits were killed. The remaining 12 rabbits were killed at 36 weeks. All specimens underwent radiologic evaluation with spiral CT followed by histologic examination for evidence of bony growth. RESULTS: Sinuses obliterated with DBM showed replacement of the sinus cavity by trabecular bone. Histology demonstrated significant progressive replacement of DBM by cancellous bone from 12 weeks (53.3%) to 36 weeks (78.8%). There were no complications observed as a result of the materials used. CONCLUSION AND SIGNIFICANCE: DBM is a prospective material for frontal sinus obliteration. Long-term studies and human trials will further elucidate the role of this material.


Author(s):  
A. Rosenberg ◽  
Aliassghar Tofighi ◽  
N. Camacho ◽  
J. Chang

A new class of osteoconductive and osteoinductive combination biomaterials composed of calcium phosphate cement (CPC), demineralized bone matrix (DBM) and a water-soluble viscosity modifier were prepared and characterized in-vitro and in-vivo. In previous studies, a range of combinations formulations were tested in order to compare their performance characteristic. In-vitro characterization results show that the mechanical strength is decreased when the amount of DBM increases. However, DBM does not affect the CPC’s ability to set hard and convert to nanocrystalline apatitic calcium phosphate, which shares the chemical structure of natural bone as seen in x-ray diffraction. It is known that the DBM alone is osteoinductive. In-vivo osteoinductivity testing of the formulations in an intramuscular, athymic rat model demonstrated that the combination material is also osteoinductive. Two formulations were chosen for in-vivo efficacy testing based on the results of in-vitro and in-vivo characterization. These formulations were studied using rabbit critical-sized femoral core defect model. The formulations were composed of DBM with particle sizes of 250 to 710 μm, carboxymethyl-cellulose (CMC) as the viscosity modifier and weight percent compositions of 50% DBM/ 45% CPC/ 5% CMC and 60% DBM/ 30% CPC/ 10% CMC. Bone integration and healing was graded at 6, 12, and 24 weeks. The two formulations were compared to the gold standard autograft at 12 weeks and to an empty defect as the negative control at 24 weeks. Based on micro-computed topography (μCT), both formulations allowed for continuity of bone throughout the defect region at all time points. No differences in dense area fraction were seen between two formulations at 6 weeks (p = 0.8661). There was no significant statistical difference between the two formulations and autograft at 12 weeks (p = 0.2467). At 24 weeks, both formulations had significantly higher dense area fractions than empty controls (p = 0.0001). Histologically, the biology of the treatment areas appeared to have returned to normal by 24 weeks with CPC appearing to be the principal osteogenic inducer. In conclusion, these combinations of CPC and DBM offers significant advantages (handling, mechanical properties and osteoinductivity) over current DBM products and can be an effective alternative to autograft in healing of bone defects.


2010 ◽  
Vol 5 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Basan Gowda Kurkalli ◽  
Olga Gurevitch ◽  
Alejandro Sosnik ◽  
Daniel Cohn ◽  
Shimon Slavin

2018 ◽  
Vol 19 (7) ◽  
pp. 2073 ◽  
Author(s):  
Yongsun Kim ◽  
Byung-Jae Kang ◽  
Wan Kim ◽  
Hui-suk Yun ◽  
Oh-kyeong Kweon

The aim of this study was to investigate the in vitro osteogenic capacity of bone morphogenetic protein 7 (BMP-7) overexpressing adipose-derived (Ad-) mesenchymal stem cells (MSCs) sheets (BMP-7-CS). In addition, BMP-7-CS were transplanted into critical-sized bone defects and osteogenesis was assessed. BMP-7 gene expressing lentivirus particles were transduced into Ad-MSCs. BMP-7, at the mRNA and protein level, was up-regulated in BMP-7-MSCs compared to expression in Ad-MSCs. Osteogenic and vascular-related gene expressions were up-regulated in BMP-7-CS compared to Ad-MSCs and Ad-MSC sheets. In a segmental bone-defect model, newly formed bone and neovascularization were enhanced with BMP-7-CS, or with a combination of BMP-7-CS and demineralized bone matrix (DBM), compared to those in control groups. These results demonstrate that lentiviral-mediated gene transfer of BMP-7 into Ad-MSCs allows for stable BMP-7 production. BMP-7-CS displayed higher osteogenic capacity than Ad-MSCs and Ad-MSC sheets. In addition, BMP-7-CS combined with demineralized bone matrix (DBM) stimulated new bone and blood vessel formation in a canine critical-sized bone defect. The BMP-7-CS not only provides BMP-7 producing MSCs but also produce osteogenic and vascular trophic factors. Thus, BMP-7-CS and DBM have therapeutic potential for the treatment of critical-sized bone defects and could be used to further enhance clinical outcomes during bone-defect treatment.


Sign in / Sign up

Export Citation Format

Share Document