Lin28 Enhances Glucose Metabolism in Human Placental Mesenchymal Stem Cells during Hypoxia via the PI3K-Akt Pathway

Author(s):  
Xi Zhou ◽  
Junbo Li ◽  
Jin Wang ◽  
Huifang Yang ◽  
Jingzeng Wang ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are widely used to treat and prevent liver ischemia–reperfusion injury (LIRI), which commonly occurs after liver surgery. Lin28 is an RNA-binding protein crucial for early embryonic development, stem cell differentiation/reprogramming, tumorigenesis, and metabolism. However, whether Lin28 can enhance metabolism in human placental MSCs (PMSCs) during hypoxia to improve the protective effect against LIRI remains unclear. First, a Lin28 overexpression construct was introduced into PMSCs; glucose metabolism, the expression of glucose metabolism - and PI3K-AKT pathway-related proteins, and the levels of microRNA Let-7 family members were examined using a glucose metabolism kit, western blots, and real-time quantitative PCR, respectively. Next, treatment with an AKT inhibitor was performed to understand the association of Lin28 with the PI3K-Akt pathway. Subsequently, AML12 cells were co-cultured with PMSCs to construct an in vitro model of PMSC protecting liver cells from hypoxia injury. Finally, C57BL/6J mice were used to establish a partial warm hepatic ischemia–reperfusion model in vivo. Lin28 increased the glycolysis capacity of PMSCs, allowing these cells to produce more energy under hypoxic conditions. Lin28 also activated PI3K-Akt signaling under hypoxic conditions, and AKT inhibition attenuated the effects of Lin28. In addition, Lin28 overexpression was found to protect cells against LIRI-induced liver damage, inflammation, and apoptosis and attenuate hypoxia-induced hepatocyte injury. Inconclusion, Lin28 enhances glucose metabolism under hypoxic conditions in PMSCs, thereby providing protective effects against LIRI via the activation of the PI3K-Akt signaling pathway. Our study first reported the application of gene-modified mesenchymal stem cell-based therapy in LIRI.

2021 ◽  
Author(s):  
Anggraini Barlian ◽  
Rizka Musdalifah Amsar ◽  
Salindri Prawitasari ◽  
Christofora Hanny Wijaya ◽  
Ika Dewi Ana ◽  
...  

Abstract BackgroundCells produce extracellular vesicles, such as exosomes and microvesicles, which are used for intracellular communication. Cell-free therapies could be enhanced by using mesenchymal stem cell-derived exosomes. Preconditioning parental cells affects the properties of their exosomes. This study aimed to investigate the role of L-ascorbic acid (LAA) and CoCl2 in the exosomes produced by human Wharton’s jelly mesenchymal stem cells (hWJ MSC) and its potential to induce chondrogenic differentiation of stem cells was also studied.. MethodThe cells were obtained from umbilical cords and characterized based on mesenchymal stem cell criteria. The cells were cultured in a serum-free medium containing LAA and CoCl2. Exosomes produced by the cells were isolated and their morphology observed with Transmission Electron Microscopy. The presence of CD 63 was confirmed using ELISA. The particle size distribution and exosome concentration were analyzed with Nanoparticle Tracking Analysis (NTA). The ability of exosomes to induce stem cell differentiation into chondrocytes was investigated using the Alcian blue assay and immunocytochemistry.ResultsStem cells were successfully isolated from the human umbilical cord. The cells can differentiate into adipocytes, chondrocytes, and osteocytes. Flowcytometry analysis showed the specific surface marker of mesenchymal stem cells. Exosomes isolated from pretreatment cells showed round-shaped morphology and confirmed the presence of CD 63. NTA analysis revealed that pretreatment of cells with LAA increases exosome yields. LAA supplementation in cell medium under hypoxic conditions induced by CoCl2 produces exosomes that can induce the chondrogeic differentiation of stem cells, confirmed by the presence of glycosaminoglycan and collagen type 2.ConclusionExosomes produced by preconditioning hWJ-MSC with LAA in hypoxic conditions have the potential to enhance human Wharton Jelly stem cell differentiation into chondrocytes.


2015 ◽  
Vol 35 (10) ◽  
pp. 1700-1711 ◽  
Author(s):  
Fenfang Chen ◽  
Xia Lin ◽  
Pinglong Xu ◽  
Zhengmao Zhang ◽  
Yanzhen Chen ◽  
...  

Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation.


2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


Author(s):  
Amit Paul ◽  
David Franz ◽  
Sumaira Yahya ◽  
Shan Sun ◽  
Michael Cho

Recent evidence suggests that stem cell differentiation can be regulated by modulation of the cell’s biomechanics. The cytoskeletal structures and arrangements in stem cells undergoing differentiation are dramatically altered, and these alterations vary by lineage. The complexity of events associated with the transformation of these precursor cells leaves many questions unanswered about morphological, structural, proteomic, and functional changes in differentiating stem cells. A thorough understanding of stem cell behavior, both experimentally and computationally, would allow for the development of more effective approaches to the expansion of stem cells in vitro and for the regulation of their commitment to a specific phenotype.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Shan Sun ◽  
Djanybek Adyshev ◽  
Steven Dudek ◽  
Amit Paul ◽  
Andrew McColloch ◽  
...  

Cell mechanics has been shown to regulate stem cell differentiation. We have previously reported that altered cell stiffness of mesenchymal stem cells can delay or facilitate biochemically directed differentiation. One of the factors that can affect the cell stiffness is cholesterol. However, the effect of cholesterol on differentiation of human mesenchymal stem cells remains elusive. In this paper, we demonstrate that cholesterol is involved in the modulation of the cell stiffness and subsequent adipogenic differentiation. Rapid cytoskeletal actin reorganization was evident and correlated with the cell's Young's modulus measured using atomic force microscopy. In addition, the level of membrane-bound cholesterol was found to increase during adipogenic differentiation and inversely varied with the cell stiffness. Furthermore, cholesterol played a key role in the regulation of the cell morphology and biomechanics, suggesting its crucial involvement in mechanotransduction. To better understand the underlying mechanisms, we investigated the effect of cholesterol on the membrane–cytoskeleton linker proteins (ezrin and moesin). Cholesterol depletion was found to upregulate the ezrin expression which promoted cell spreading, increased Young's modulus, and hindered adipogenesis. In contrast, cholesterol enrichment increased the moesin expression, decreased Young's modulus, and induced cell rounding and facilitated adipogenesis. Taken together, cholesterol appears to regulate the stem cell mechanics and adipogenesis through the membrane-associated linker proteins.


2016 ◽  
Vol 8 (41) ◽  
pp. 7437-7444 ◽  
Author(s):  
Hongjun Song ◽  
Jenna M. Rosano ◽  
Yi Wang ◽  
Charles J. Garson ◽  
Balabhaskar Prabhakarpandian ◽  
...  

A dual-micropore-based microfluidic electrical impedance flow cytometer for non-invasive identification of the differentiation state of mesenchymal stem cells.


Small ◽  
2016 ◽  
Vol 12 (13) ◽  
pp. 1770-1778 ◽  
Author(s):  
Jichuan Qiu ◽  
Jianhua Li ◽  
Shu Wang ◽  
Baojin Ma ◽  
Shan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document