scholarly journals Synthesis and characterization of Eu3+ doped TiO2 thin films deposited by spray pyrolysis technique for photocatalytic application

2020 ◽  
Author(s):  
Shereen Alshomar

Abstract In this study, nanocrystalline TiO 2 : Eu 3+ thin films are successfully formed by spray pyrolysis technique deposited on glass substrate. Optical, electrical, structure, surface morphology, and photocatalytic degradation of Methylene blue have been examined. The optical properties of the films are analyzed using transmittance and reflectance spectra, which are measured using UV-Vis-NIR double-beam spectrophotometer. Optical properties such as refractive index (n), extinction coefficient (k), optical conductivity (σ) and Urbach energy (E u ) have been calculated as a function of Eu 3+ concentration. Film thickness were evaluated using the refractive index dependence on wavelength . The films thickness were determined as 97.13, 122.62, 123.24, 117.14 and 128.25 nm, respectively, for Eu doped TiO 2 at 0,4, 6, 8 and 10 wt % doping concentration. The band gap values raised from 3.29 to 3.42 eV with increasing the Eu 3+ dopant concentration. The highest electrical conductivity was found to be 3.01x10 -2 (Ω.cm) -1 at high doping level with 10 wt% Eu 3+ . The XRD analysis illustrate the tetragonal crystal structure of films with anatase phase and reduces crystallite size linearly with increasing Eu 3+ concentration. Scanning electron microscopy (SEM) analysis indicated consistent allocation of irregular and spherical shaped grains covering the substrate surface. The average grain size in range of 82.5 – 51.1 nm is observed and films show porous nature. The photocatalytic effect of TiO 2 : Eu 3+ thin films is predicted from the degradation of methylene blue (MB) at room temperature under UV light irradiation. An enhancement in photocatalytic degradation observed by increasing the amount of Eu 3+ due to increase in the e/h pair production and increase of film thickness. These results make TiO 2 : Eu 3+ thin films as attractive candidate for photovoltaic cells and other optoelectronic device applications

2011 ◽  
Vol 8 (2) ◽  
pp. 561-565
Author(s):  
Baghdad Science Journal

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.


Author(s):  
Sofea Nabila Hazmin ◽  
F. S. S. Zahid ◽  
N. S. M. Sauki ◽  
M. H. Mamat ◽  
M. N. Amalina

<span>This paper presents the physical and optical properties of AZO thin films on Teflon substrate at low deposition temperature by spray pyrolysis. In this study, the effect of different process parameters such as spray time and substrate to nozzle distance on the physical and optical characteristic of aluminium doped zinc oxide (AZO) deposited on Teflon substrates was investigated. The AZO thin films were successfully deposited onto Teflon substrate by spray pyrolysis technique at low deposition temperature. The physical analysis by X-ray diffraction (XRD) shows that the deposited Teflon substrate films have a preferred orientation along the direction (100) and (101). Optical measurements were conducted using Jasco/V-670 Ex Uv-Vis-NIR Spectrophotometer model to confirms that in visible ray it is possible to get good reflectance of AZO films with a reflection of 80%. The values of band gaps Eg were calculated from the spectra of UV-Visible reflectance that were vary between 3.06 and 3.14 eV. </span>


2010 ◽  
Vol 7 (1) ◽  
pp. 69-75
Author(s):  
Baghdad Science Journal

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters such as Texture Coefficient (Tc), dislocation density (?) and number of crystals (M) were also calculated .


2018 ◽  
Vol 17 (03) ◽  
pp. 1760037 ◽  
Author(s):  
A. Nancy Anna Anasthasiya ◽  
K. Gowtham ◽  
R. Shruthi ◽  
R. Pandeeswari ◽  
B. G. Jeyaprakash

The spray pyrolysis technique was employed to deposit V2O5 thin films on a glass substrate. By varying the precursor solution volume from 10[Formula: see text]mL to 50[Formula: see text]mL in steps of 10[Formula: see text]mL, films of various thicknesses were prepared. Orthorhombic polycrystalline V2O5 films were inferred from the XRD pattern irrespective of precursor solution volume. The micro-Raman studies suggested that annealed V2O5 thin film has good crystallinity. The effect of precursor solution volume on morphological and optical properties were analysed and reported.


Sign in / Sign up

Export Citation Format

Share Document