scholarly journals Sparse Representation Optimization of Gaussian Mixed Feature of Image Based on Convolution Neural Network

Author(s):  
Yuguang Ye

Abstract With the rapid development of intelligent algorithm and image processing technology, the limitations of traditional image processing methods are more and more obvious. Based on this, this paper studies a new pattern of sparse representation optimization of image Gaussian mixture feature based on convolution neural network, and designs a sparse representation system model of vehicle detection image based on convolution neural network. The vehicle image data is collected from many aspects, and the convolution neural network is used for comprehensive analysis and evaluation. The model can extract the feature information of the vehicle detection image better by making the scheme of the real-time vehicle detection image and according to the image features and convolution neural network algorithm. The results show that the Gaussian mixture feature sparse representation optimization model based on convolution neural network has the advantages of high feasibility, high data accuracy and high response speed, which can enhance the processing efficiency of vehicle detection image and improve the utilization of local environmental information in the image.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250782
Author(s):  
Bin Wang ◽  
Bin Xu

With the rapid development of Unmanned Aerial Vehicles, vehicle detection in aerial images plays an important role in different applications. Comparing with general object detection problems, vehicle detection in aerial images is still a challenging research topic since it is plagued by various unique factors, e.g. different camera angle, small vehicle size and complex background. In this paper, a Feature Fusion Deep-Projection Convolution Neural Network is proposed to enhance the ability to detect small vehicles in aerial images. The backbone of the proposed framework utilizes a novel residual block named stepwise res-block to explore high-level semantic features as well as conserve low-level detail features at the same time. A specially designed feature fusion module is adopted in the proposed framework to further balance the features obtained from different levels of the backbone. A deep-projection deconvolution module is used to minimize the impact of the information contamination introduced by down-sampling/up-sampling processes. The proposed framework has been evaluated by UCAS-AOD, VEDAI, and DOTA datasets. According to the evaluation results, the proposed framework outperforms other state-of-the-art vehicle detection algorithms for aerial images.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 816
Author(s):  
Pingping Liu ◽  
Xiaokang Yang ◽  
Baixin Jin ◽  
Qiuzhan Zhou

Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.


2021 ◽  
Vol 336 ◽  
pp. 08013
Author(s):  
Zhaosheng Xu

Based on the author's research time, this paper studies the software credibility algorithm based on deep convolutional sparse coding. Firstly, it summarizes the convolutional sparse coding and trust classification system, and then constructs the algorithm from two aspects: factor processing based on deep convolution neural network and trust classification based on sparse representation.


2020 ◽  
pp. 1-14
Author(s):  
Zhen Huang ◽  
Qiang Li ◽  
Ju Lu ◽  
Junlin Feng ◽  
Jiajia Hu ◽  
...  

<b><i>Background:</i></b> Application and development of the artificial intelligence technology have generated a profound impact in the field of medical imaging. It helps medical personnel to make an early and more accurate diagnosis. Recently, the deep convolution neural network is emerging as a principal machine learning method in computer vision and has received significant attention in medical imaging. <b><i>Key Message:</i></b> In this paper, we will review recent advances in artificial intelligence, machine learning, and deep convolution neural network, focusing on their applications in medical image processing. To illustrate with a concrete example, we discuss in detail the architecture of a convolution neural network through visualization to help understand its internal working mechanism. <b><i>Summary:</i></b> This review discusses several open questions, current trends, and critical challenges faced by medical image processing and artificial intelligence technology.


2016 ◽  
Vol 14 (1) ◽  
pp. 172988141668270 ◽  
Author(s):  
Congyi Lyu ◽  
Haoyao Chen ◽  
Xin Jiang ◽  
Peng Li ◽  
Yunhui Liu

Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.


Author(s):  
H. Yan ◽  
A. Achkar ◽  
Akshaya Mishra ◽  
K. Naik

Human validation of computer vision systems increase their operatingcosts and limits their scale. Automated failure detection canmitigate these constraints and is thus of great importance to thecomputer vision industry. Here, we apply a deep neural networkto detect computer vision failures on vehicle detection tasks. Theproposed model is a convolution neural network that estimates theoutput quality of a vehicle detector. We train the network to learnto estimate a pixel-level F1 score between the vehicle detector andhuman annotated data. The model generalizes well to testing data,providing a mechanism for identifying detection failures.


2021 ◽  
Vol 13 (18) ◽  
pp. 3605
Author(s):  
Xin Luo ◽  
Guangling Lai ◽  
Xiao Wang ◽  
Yuwei Jin ◽  
Xixu He ◽  
...  

With the rapid development of unmanned aerial vehicle (UAV) technology, UAV remote sensing images are increasing sharply. However, due to the limitation of the perspective of UAV remote sensing, the UAV images obtained from different viewpoints of a same scene need to be stitched together for further applications. Therefore, an automatic registration method of UAV remote sensing images based on deep residual features is proposed in this work. It needs no additional training and does not depend on image features, such as points, lines and shapes, or on specific image contents. This registration framework is built as follows: Aimed at the problem that most of traditional registration methods only use low-level features for registration, we adopted deep residual neural network features extracted by an excellent deep neural network, ResNet-50. Then, a tensor product was employed to construct feature description vectors through exacted high-level abstract features. At last, the progressive consistency algorithm (PROSAC) was exploited to remove false matches and fit a geometric transform model so as to enhance registration accuracy. The experimental results for different typical scene images with different resolutions acquired by different UAV image sensors indicate that the improved algorithm can achieve higher registration accuracy than a state-of-the-art deep learning registration algorithm and other popular registration algorithms.


Sign in / Sign up

Export Citation Format

Share Document