Engineered Whole Cut Meats Assembled of Cell Fibers Constructed by Tendon-Gel Integrated Bioprinting

2020 ◽  
Author(s):  
Dong-Hee Kang ◽  
Fiona Louis ◽  
Hao Liu ◽  
Hiroshi Shimoda ◽  
Yasutaka Nishiyama ◽  
...  

Abstract With the current interest in artificial meat, mammalian cell-based cultured meat has mostly been in minced form. There is thus still a high demand for artificial steak-like meat. Herein, we demonstrate in vitro construction of engineered steak-like meat assembled of three types of edible bovine cell fibers, such as skeletal muscle, adipose, and blood capillary fabricated by tendon-gel integrated printing (TIP) technology. Because actual meat is an anisotropically aligned assembly of the fibers connected to tendon for the actions of contraction and relaxation, TIP was discovered to construct the fiber assembly connecting tendon gels with engineered structures. In this study, a total of 72 fibers comprising 42 muscle, 28 adipose, and 2 blood capillary were constructed by TIP and subsequently assembled to fabricate a steak-like meat with a diameter of 5 mm and a length of 10 mm by consulting histological images of actual Wagyu beef steak. The TIP discovered here could be a powerful manufacturing technology for fabrication of the desired types of steak-like cultured meats.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dong-Hee Kang ◽  
Fiona Louis ◽  
Hao Liu ◽  
Hiroshi Shimoda ◽  
Yasutaka Nishiyama ◽  
...  

AbstractWith the current interest in cultured meat, mammalian cell-based meat has mostly been unstructured. There is thus still a high demand for artificial steak-like meat. We demonstrate in vitro construction of engineered steak-like tissue assembled of three types of bovine cell fibers (muscle, fat, and vessel). Because actual meat is an aligned assembly of the fibers connected to the tendon for the actions of contraction and relaxation, tendon-gel integrated bioprinting was developed to construct tendon-like gels. In this study, a total of 72 fibers comprising 42 muscles, 28 adipose tissues, and 2 blood capillaries were constructed by tendon-gel integrated bioprinting and manually assembled to fabricate steak-like meat with a diameter of 5 mm and a length of 10 mm inspired by a meat cut. The developed tendon-gel integrated bioprinting here could be a promising technology for the fabrication of the desired types of steak-like cultured meats.


2021 ◽  
pp. 2000412
Author(s):  
Stephani Stamboroski ◽  
Arundhati Joshi ◽  
Paul‐Ludwig Michael Noeske ◽  
Susan Köppen ◽  
Dorothea Brüggemann
Keyword(s):  

2005 ◽  
Vol 94 (11) ◽  
pp. 1004-1011 ◽  
Author(s):  
Frédéric Adam ◽  
Shilun Zheng ◽  
Nilesh Joshi ◽  
David Kelton ◽  
Amin Sandhu ◽  
...  

SummaryMultimerin 1 (MMRN1) is a large, soluble, polymeric, factor V binding protein and member of the EMILIN protein family.In vivo, MMRN1 is found in platelets, megakaryocytes, endothelium and extracellular matrix fibers, but not in plasma. To address the mechanism of MMRN1 binding to activated platelets and endothelial cells, we investigated the identity of the major MMRN1 receptors on these cells using wild-type and RGE-forms of recombinant MMRN1. Ligand capture, cell adhesion, ELISA and flow cytometry analyses of platelet-MMRN1 binding, indicated that MMRN1 binds to integrins αIIbβ3 and αvβ3. Endothelial cell binding to MMRN1 was predominantly mediated by αvβ3 and did not require the MMRN1 RGD site or cellular activation. Like many other αvβ3 ligands, MMRN1 had the ability to support adhesion of additional cell types, including stimulated neutrophils. Expression studies, using a cell line capable of endothelial-like MMRN1 processing, indicated that MMRN1 adhesion to cellular receptors enhanced its extracellular matrix fiber assembly. These studies implicate integrin-mediated binding in MMRN1 attachment to cells and indicate that MMRN1 is a ligand for αIIbβ3 and αvβ3.


2004 ◽  
Vol 286 (6) ◽  
pp. H2089-H2095 ◽  
Author(s):  
Brian B. Roman ◽  
Paul H. Goldspink ◽  
Elyse Spaite ◽  
Dalia Urboniene ◽  
Ron McKinney ◽  
...  

Protein kinase C (PKC) modulates cardiomyocyte function by phosphorylation of intracellular targets including myofilament proteins. Data generated from studies on in vitro heart preparations indicate that PKC phosphorylation of troponin I (TnI), primarily via PKC-ε, may slow the rates of cardiac contraction and relaxation (+dP/d t and −dP/d t). To explore this issue in vivo, we employed transgenic mice [mutant TnI (mTnI) mice] in which the major PKC phosphorylation sites on cardiac TnI were mutated by alanine substitutions for Ser43 and Ser45 and studied in situ hemodynamics at baseline and increased inotropy. Hearts from mTnI mice exhibited increased contractility, as shown by a 30% greater +dP/dt and 18% greater −dP/d t than FVB hearts, and had a negligible response to isoproterenol compared with FVB mice, in which +dP/d t increased by 33% and −dP/d t increased by 26%. Treatment with phenylephrine and propranolol gave a similar result; FVB mouse hearts demonstrated a 20% increase in developed pressure, whereas mTnI mice showed no response. Back phosphorylation of TnI from mTnI hearts demonstrated that the mutation of the PKC sites was associated with an enhanced PKA-dependent phosphorylation independent of a change in basal cAMP levels. Our results demonstrate the important role that PKC-dependent phosphorylation of TnI has on the modulation of cardiac function under basal as well as augmented states and indicate interdependence of the phosphorylation sites of TnI in hearts beating in situ.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Qiu-Lan Zhou ◽  
Zhi-Yi Chen ◽  
Yi-Xiang Wang ◽  
Feng Yang ◽  
Yan Lin ◽  
...  

With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.


2020 ◽  
Author(s):  
Alexander Goikoetxea ◽  
Erin L Damsteegt ◽  
Erica V Todd ◽  
Andrew McNaughton ◽  
Neil J Gemmell ◽  
...  

AbstractMany teleost fishes undergo natural sex change, and elucidating the physiological and molecular controls of this process offers unique opportunities not only to develop methods of controlling sex in aquaculture settings, but to better understand vertebrate sexual development more broadly. Induction of sex change in some sequentially hermaphroditic or gonochoristic fish can be achieved in vivo through social manipulation, inhibition of aromatase activity, and steroid treatment. However, the induction of sex change in vitro has been largely unexplored. In this study, we established an in vitro culture system for ovarian explants in serum-free medium for a model sequential hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). This culture technique enabled evaluating the effect of various treatments with 17β-estradiol (E2), 11-ketotestosterone (11KT) or cortisol (CORT) on spotty wrasse ovarian architecture for 21 days. A quantitative approach to measuring the degree of ovarian atresia within histological images was also developed, using pixel-based machine learning software. Ovarian atresia likely due to culture was observed across all treatments including no-hormone controls, but was minimised with treatment of at least 10 ng/mL E2. Neither 11KT nor CORT administration induced proliferation of spermatogonia (i.e. sex change) in the cultured ovaries indicating culture beyond 21 days may be needed to induce sex change in vitro. The in vitro gonadal culture and analysis systems established here enable future studies investigating the paracrine role of sex steroids, glucocorticoids and a variety of other factors during gonadal sex change in fish.


Author(s):  
Van Ngoc Le Trinh ◽  
Hang Thi Kim Tran ◽  
Thu Thuy Anh Vo ◽  
Tuyet Thi Vi Le ◽  
Ha Le Bao Tran

Global average infertility rate is about 6– 12%, and in Vietnam at around 7.7%. As a result, there is a high demand for treatment, especially for female infertility. In vitro maturation (IVM) was evaluated and proven to be the most popular and promising at the moment. In long-term cultivation, the follicle was observed to extend, therefore, the usage of a supporting frame is quite necessary to maintain follicle’s natural sphere structure as well as completing the mature process. Amniotic membrane is an avascular membrane, composed of collagen, fibronectin, nidogen, proteoglycan, containing a big number of growth – factors with antimicrobial, anti-inflammatory, low immunogenicity and viscoelasticity properties. Amniotic hydrogel owns structure formed with thin fibers to help preserve the main component as collagen, which can turn to gel form at 37 degree Celsius. With those properties, amniotic hydrogel showed high potential as a scaffold for the follicle. When amniotic hydrogel is used as a scaffold for cultivating of secondary follicle (100 – 130 µm), the size of oocyte and follicle increased after 12 days of culturing, along with the formation of antrum. The results demonstrated the possibility to use amniotic hydrogel as a scaffold for the development of the secondary follicle.


1962 ◽  
Vol 109 (4) ◽  
pp. 795-796 ◽  
Author(s):  
R. R-Candela ◽  
J. L. R-Candela ◽  
D. Martin-Hernandez ◽  
T. Castilla-Cortazar

Sign in / Sign up

Export Citation Format

Share Document