scholarly journals Trade-off Strategy of Three Dominant Species in Grazing Exclusion of Desert Steppe,china

Author(s):  
jingli ma ◽  
Hongbin Ma ◽  
Yao Zhou ◽  
Qi Lu ◽  
Yan Shen

Abstract Background and AimsGrazing exclusion is a powerful measure to restore the ecological environment in desert steppe. Studying the changing trend of functional traits and trade-off strategy about dominant species what is of great significance to understand the effect of grazing exclusion on species succession. Methods We studied that the change of leaf and root functional traits of three dominant species (Lespedeza potaninii, Agropyron mongolicum and Stipa breviflora) under different term of grazing exclusion. ResultsWe found that the leaf area and leaf nitrogen content, leaf dry matter content, total root length, specific root length and specific root surface of Lespedeza potaninii in grazing were higher than grazing exclusion. The highest specific leaf area, specific root length of Agropyron mongolicum and Stipa breviflora were observed in short-term grazing exclusion. Leaf tissue density and root tissue density significantly decreased in short-term grazing exclusion. Economic spectrum exist, Lespedeza potaninii have more conservation strategy in short-term grazing exclusion compared with grazing. Agropyron mongolicum and Stipa breviflora have more acquisition strategy in grazing exclusion. Average diameters have great effected on above-ground biomass.ConclusionThe result showed that grazing exclusion change leaf and root functional traits of three dominant species, different species have different trade-off strategy.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 793
Author(s):  
Yaxiong Zheng ◽  
Fengying Guan ◽  
Shaohui Fan ◽  
Yang Zhou ◽  
Xiong Jing

Functional characteristics reflect plant strategies and adaptability to the changing environment. Determining the dynamics of these characteristics after harvesting would improve the understanding of forest response strategies. Strip clearcutting (SC) of moso bamboo forests, which significantly reduces the cutting cost, has been proposed to replace manual selective harvesting. A comparison of restoration features shows that 8 m is the optimal cutting width. However, the precise response of functional features to the resulting harvest-created gap remains unclear. In this study, three SC plots were selected which was performed in February 2019, with three unharvested plots as a control (C). The study focused on 10 functional traits, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), nitrogen/phosphorus ratio (N:P), wood density (WD), fine root biomass (FRB), specific fine root length (SRL), and root length density (RLD). A one-way ANOVA was used to compare differences in functional traits and soil nutrients between treatments. Strip clearcutting significantly reduced the soil organic carbon (SOC) and total nitrogen (TN) contents (p < 0.05). In terms of functional characteristics, SC significantly decreased LA and increased LNC, LPC, and N:P (p < 0.05). However, SC had no significant effect on fine root traits (p > 0.05). This study highlighted that root trait, soil content of total phosphorus (TP) and total potassium (TK) returned to the level of uncut plots after a year’s recovery. The LPC, LNC, and N:P were negatively correlated with LA, and LDMC and WD were negatively correlated with SLA, while the effect of SC on fine root traits was limited (p > 0.05). Fine root traits (FRB, RLD, and SRL) were positively associated with SOC, TN, and TP, but negatively correlated with TK. The changes in soil nutrient content caused by the removal of biomass were normal. Increased light and the rapid growth of new trees will increase nutrient regressions; therefore, these results further confirm the feasibility of SC.


2018 ◽  
Vol 40 (2) ◽  
pp. 179 ◽  
Author(s):  
Jinghui Zhang ◽  
Yongmei Huang ◽  
Huiying Chen ◽  
Jirui Gong ◽  
Yu Qi ◽  
...  

Variations in ecosystem function in response to land-use changes may be expected to reflect differences in the functional traits of plants. In this study, we sought to reveal the relationship between trait variability and grazing management on typical steppe in Inner Mongolia, and explore the implications of this relationship for ecosystem functioning. We measured aboveground biomass and 18 functional traits of the most abundant plant species in a grassland subject to three grazing-management regimes: long-term grazing, short-term grazing exclusion (since 2008) and long-term grazing exclusion (since 1956). Principal component analysis of the variation in species-level traits revealed trade-offs between the traits that enabled rapid acquisition of resources by fast-growing annual species and those that promoted conservation of resources by perennial grasses, especially Stipa grandis. However, there was no systematic pattern of intra-specific variation in trait values recorded among sites. Aggregation of plant functional traits to the community level revealed a gradient of responses of typical steppe to grazing exclusion. Long-term grazing favoured species whose traits indicate low forage quality and relatively low growth rate. Exclusion of grazing for several years favoured species whose traits indicate relatively high growth rate and high capacity to acquire resources. Exclusion of grazing for several decades favoured species whose morphological and physiological traits indicated low growth rates and high capacity for resource conservation. These community-level traits imply that ecosystem carbon and nutrient stores will change in response to the grazing regime. Long-term grazing will result in decreased plant carbon and nitrogen content, and will lead to carbon and nutrient loss, whereas short-term and long-term grazing exclusion are beneficial to the recovery of carbon and nutrient storage. The findings support the value of community aggregated traits as indicators of environmental or management change and for explaining changes in ecosystem function.


2013 ◽  
Vol 48 (3) ◽  
pp. 373-391 ◽  
Author(s):  
Jitka Klimešová ◽  
Ondřej Mudrák ◽  
Jiři Doležal ◽  
Michal Hájek ◽  
Martin Dančák ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Huan Cheng ◽  
Yuanbo Gong ◽  
Xiaoan Zuo

Clarifying the response of community and dominance species to climate change is crucial for disentangling the mechanism of the ecosystem evolution and predicting the prospective dynamics of communities under the global climate scenario. We examined how precipitation changes affect community structure and aboveground biomass (AGB) according to manipulated precipitation experiments in the desert steppe of Inner Mongolia, China. Bayesian model and structural equation models (SEM) were used to test variation and causal relationship among precipitation, plant diversity, functional attributes, and AGB. The results showed that the responses of species richness, evenness, and plant community weighted means traits to precipitation changes in amount and year were significant. The SEM demonstrated that precipitation change in amount and year has a direct effect on richness, evenness, and community-weighted mean (CWM) for height, leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), and leaf carbon content (LCC) and AGB; there into CWM for height and LDMC had a direct positive effect on AGB; LA had a direct negative effect on AGB. Three dominant species showed diverse adaptation and resource utilization strategies in response to precipitation changes. A. polyrhizum showed an increase in height under the precipitation treatments that promoted AGB, whereas the AGB of P. harmala and S. glareosa was boosted through alterations in height and LA. Our results highlight the asynchronism of variation in community composition and structure, leaf functional traits in precipitation-AGB relationship. We proposed that altered AGB resulted from the direct and indirect effects of plant functional traits (plant height, LA, LDMC) rather than species diversity, plant functional traits are likely candidate traits, given that they are mechanistically linked to precipitation changes and affected aboveground biomass in a desert steppe.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xuan Jia ◽  
Chaohe Huangfu ◽  
Dafeng Hui

Plant species may acquire different forms of nitrogen (N) to reduce competition for the same resource, but how plants respond to neighbors with different densities in their N uptake is still poorly understood. We investigated the effects of competition regime on the uptake of different N forms by two hygrophytes, Carex thunbergii and Polygonum criopolitanum, by conducting a hydroponic test of excised roots and an in situ experiment in a subtropical wetland ecosystem. The two species were grown either in monocultures or mixtures with various neighbor densities. Root functional traits and N uptake rates of different N forms were measured. Our results showed that N uptake was mainly determined by N form, rather than species identity. Both species were able to use organic N sources, but they took up relatively more N supplied as NO3- than as NH4+ or glycine, irrespective of competition treatments. Both species preferred NO3- when grown in monoculture, but in the presence of competitors, the preference of fast-growing C. thunbergii persisted while P. criopolitanum acquired more NH4+ and glycine, with stronger responses being observed at the highest neighbor density. The hydroponic test suggested that these divergences in N acquisition between two species might be partially explained by different root functional traits. To be specific, N uptake rates were significantly positively correlated with root N concentration and specific root length, but negatively correlated with root dry matter content. Our results implicated that C. thunbergii has a competitive advantage with relatively more stable N acquisition strategy despite a lower N recovery than P. criopolitanum, whereas P. criopolitanum could avoid competition with C. thunbergii via a better access to organic N sources, partly mediated by competition regimes.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 743 ◽  
Author(s):  
Fujing Pan ◽  
Yueming Liang ◽  
Kelin Wang ◽  
Wei Zhang

Soil nitrogen (N) and phosphorus (P) shortages limit the growth of shrubs, and P shortage limit the growth of trees in karst ecosystems. Changes in fine root functional traits are the important strategies for plants to respond to such nutrient shortages. However, such responses in karst ecosystems are poorly known. To determine the responses of fine root functional traits to soil N and P changes and define their resource-use strategies in the ecosystem, we tested the specific root length (SRL), root tips over the root biomass (RT/RB), and N concentration (Nroot) in the fine roots of four plant species (two shrubs (Alchornea trewioides and Ligustrum sinense) and two trees (Celtis biondii and Pteroceltis tatarinowii)) during the dry (January) and the wet (July) season. The results showed that the SRL, RT/RB, and Nroot in the fine roots of shrub species were lower than those of tree species, and the three parameters were higher in the wet season than in the dry season. Linear regression models revealed that the SRL, RT/RB, and Nroot of overall species increased with increasing soil N and P concentrations and availabilities, and were positively correlated with increasing rhizosphere soil oxalic acid, microbial biomass carbon (C), and the activities of hydrolytic enzymes. In addition, the individual plant species had unique patterns of the three fine root traits that resulted affected by the change of soil nutrients and biochemistry. Thus, the specific root length, root tips over the root biomass, and N concentrations of fine roots were species-specific, affected by seasonal change, and correlated with soil nutrients and biochemistry. Our findings suggests that fine root functional traits increase the ability of plant species to tolerate nutrient shortage in karst ecosystems, and possibly indicated that a P-exploitative strategy in tree species and an N-conservative strategy in shrub species were exhibited.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


Sign in / Sign up

Export Citation Format

Share Document