scholarly journals Effects Of Spent Engine Oil On Soil Characteristics And Selected Phytochemicals In Amaranthus Hybridus

Author(s):  
Arathy Arunan Swapna ◽  
Rajani Vijayammal ◽  
Dhanya Surendran Radha

Abstract Spent engine oil is hazardous to the environment. Indiscriminate disposal of spent engine oil drain from engines after servicing has been found to affect the environment. An experiment was carried out to determine the effect of spent engine oil pollution on soil characteristics and the ability of Amaranthushybridusto thrive in the soil supplemented with varying concentrations of spent engine oil ranging from 50- 300 mL. Soil pH was slightly increased due to spent engine oil pollution. Nitrogen, phosphorus and potassium were reduced in the polluted soils and the soil organic carbon was increased. Soil samples polluted with spent engine oil showed increased bulk and particle densities and also decreased water holding capacity and porosity. The spent engine oil pollution affected the phytochemicals and resulted in the increased concentration of anti- nutrient tannin and decreased concentrations of nutrients like alkaloids, flavonoids, etc. The results of this study suggest that spent engine oil at any concentration seriously affects the soil properties and phytochemical analysis showed the inhibitory effects of spent engine oil on Amaranthushybridus.

2020 ◽  
pp. 17-25
Author(s):  
M. O. Nwachukwu ◽  
J. N. Azorji ◽  
L. A. Adjero ◽  
M. C. Green ◽  
C. E. Igwe ◽  
...  

This study investigated the impacts of spent engine oil on the physicochemical properties of soil, soil's microbial population and growth of Capsicum annuum. It covered assessment of different levels of contamination (0, 20, 40, 60 and 80%) in soil; which represents the degree of oil spillage concentration on the growth performance of C. annuum investigated. Percentage germination, seedling height, number of leaves and number of branches decreased as the concentrations of the spent engine oil in soil samples increased and affected soil physicochemical properties. The screening experiment conducted showed that poultry manure improved the physicochemical properties of sandy loam soils contaminated engine oil. The effects of poultry manure as an organic amendment was assessed using pepper (C. annuum) as test crop. All amendment made significant increase in soil organic carbon and calcium content over the polluted soils. Soil acidity increased, soil exchangeable ions decreased. N, P and K were altered in the polluted soils as compared to the controls. There were increased bacterial counts (2.21 – 2.85) and a decrease in fungi population (0.48 - 0.59) in the spent engine oil-contaminated soils compared with the control. The oil reduced germination percentage, depressed growth, reduction in leaf number and plant height of the C. annuum. Therefore the spent engine oil clearly had detrimental effects on soil's physicochemical and biological properties. The oil contributed largely to the extreme acidic nature of the polluted soils. However, maximum increase in plant height, germination percentage, number of leaves and branches were recorded with amendment of the polluted soils with poultry manure. Results show the considerable potential of remediation protocols with poultry manure as a remediating agent for oil spill remediation in the soil samples.


2017 ◽  
Vol 5 (11) ◽  
pp. 355-365 ◽  
Author(s):  
Babajide ◽  
Popoola ◽  
Gbadamosi ◽  
Oyedele ◽  
Liasu

While strategizing towards achieving improved soil fertility for sustainable tropical crop production, timely application of fertilizers on regular basis alone is not the University of Technology, Ogbomoso, Oyo State, Nigeria best approach, particularly on polluted soils. However, seeking for reliable natural, biological and environment friendly means of ensuring effective riddance of toxic elements or heavy metals from tropical agricultural soils is equally a worthwhile technology. An open-field potted experiment was conducted during early raining season of 2016 (March-July), at the Teaching and Research Farms of Oyo State College of Agriculture and Technology, Igboora, to investigate the effect of spent engine oil polluted soil conditions on performance and heavy metal accumulation potentials of Ceratothecasesamoides. Spent engine oil was applied at different concentrations (0.0ml, 50.0ml, 100.0ml, 150.0ml, and 200.0ml to each pot containing 7kg soil. Four pots per treatments were used. The trial was arranged in Completely Randomised Design (CRD), replicated three (3) times. Data were collected on growth parameters (number of leaves, plant height, stem girth, leaf length and leaf breadth). The data were subjected to analysis of variance (ANOVA) and Duncan Multiple Range Test (DMRT) was used to the means. Pre and post-cropping soil analyses were carried out, for determination of nutrient concentrations. Also, after the termination of the experiment, plant samples were collected from each of the pots for oven-drying followed by determination of nutrient concentrations (including the heavy metals). Oil pollution significantly affected growth and heavy metal accumulation of the test-crop. Growth decreases with increasing rate of lubricant application, while the heavy metal concentrations in the test-crop increased with increasing concentrations of the applied spent engine oil. Thus, Ceratothecasesamoides is a wild plant which could be easily exploited for its heavy metals hyper-accumulative or phyto-extractive potentials, so as to reclaim heavy metals polluted soils from toxicity, for sustainable crop production.


2019 ◽  
Vol 3 (5) ◽  
pp. 471-484
Author(s):  
Adeniyi Adeleye ◽  
Mohammed B. Yerima ◽  
Michael E. Nkereuwem ◽  
Victor O. Onokebhagbe ◽  
Peter G. Shiaka ◽  
...  

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Ayokunle Samuel Bolaji ◽  
Mojeed Olaide Liasu ◽  
Abiodun Ayanfemi Ayandele ◽  
John Ayobami Amao

2017 ◽  
Vol 9 (3) ◽  
pp. 85
Author(s):  
Iwekumo Agbozu ◽  
Bassey Uwem ◽  
Boisa Ndokiari

Removal of Zn, Pb, Cu and Fe ions from unspent and spent engine oil was studied using Termite soil. Process parameters such as contact time and adsorbent dosage were varied. Values from contact time were used for predicting kinetics equation of their uptake. At optimum time of 40 minutes, percentage adsorption was of the order Fe>Zn>Cu>Pb for both spent and unspent engine oil. Kinetics equation such as Elovich, Intra-particle, Pseudo-first order and Pseudo-second order were tested. Results obtained shows that their sequestering pattern fit into the pseudo-second order kinetics. Initial reaction rates, h (mg/g.min) and α (mg. g-1min-1) for all metal ions obtained from Pseudo-second order and Elovich kinetic models followed the trends Zn>Fe>Cu>Pb and Zn>Fe>Pb>Cu respectively in spent engine oil while for unspent engine oil, the trend was Fe>Zn>Cu>Pb for h (mg/g.min) and Zn>Fe>Pb>Cu for α (mg. g-1min-1). Electrostatic attraction existing on the surface of the adsorbent assisted in the high initial reaction of Zn and Fe ions, implying good affinity of the ions for the adsorbent. Desorption constant ᵦ (g/mg) was of the trend Cu>Pb>Fe>Zn and Cu>Pb>Zn>Fe for spent and unspent engine oils respectively. Intra-particle diffusion constant kid (mgg-1min-1/2) followed a similar pattern, revealing strong binding between Zn and termite soil than any of the metal ion. This pilot research has been able to suggest a kinetic process for uptake of the studied ions from spent and unspent engine oil.


2021 ◽  
Vol 25 (5) ◽  
pp. 877-885
Author(s):  
A.J. Odebode ◽  
K.L. Njoku ◽  
A.A. Adesuyi ◽  
M.O. Akinola

This study was carried out to investigate the phytotoxicity of spent engine oil and palm kernel sludge on seed germination, seedling early growth and survival of sunflower (Helianthus annuus L) and its phytoremediating potential. 8.0 kg topsoil mixed with 2, 4, 6, 8 and 10% (w/v) of spent engine oil and palm kernel sludge, while the control was not mixed with spent oil and sludge (0%). The seeds were sown on these soils and monitored daily. Parameters taken were; plant height, leaf number and stem girth. The result showed that spent engine oil treated plants adversely affected growth compared to palm kernel sludge plants and control which performed better. For plant height, the mean stem girth for control at 2nd week was 0.40±0.05 mm, spent engine oil was 5.96±0.97 palm kernel oil effluent was 14.73±1.16 and at 12th week, control was 1.30±0.05 while for SEO the plant had withered and 124.6±9.02 for POE. Number of leaves at the 12th week was 26.00±2.08 in the control, 8.66±0.66, for spent engine oil at 4%, while for palm oil effluent it was 27.66±0.66, at 4%, concentration respectively. Stem girth at 2 weeks for spent engine oil was 0.19±0.05 at 2%, 0.43±0.03 for palm kernel oil effluent and at the 12th week of planting at 10% concentration was 1.63±0.08 for palm kernel oil effluent, and all plants had withered off for spent engine oil at same concentration at the 12th week. Also, spent engine oil at all concentrations delayed the germination of Helianthus annuus by 2days compared to control. Comparison analysis test showed that growth in untreated plants were significantly higher (p>0.05) than spent oil and palm kernel sludge treated plants. Similar result was observed for leaf number and stem girth which had higher mean value in palm kernel sludge and control compared to spent oil. Sunflower grown in 8% and 10% palm kernel sludge contaminated soil also flowered eight days earlier than control plants, while spent oil treated plant did not. The result shows that sunflower cannot tolerate high (4%, 6%, 8% and 10%) concentrations of spent engine oil in soil compared to palm oil effluent. Therefore, spent engine oil should be properly disposed because of its adverse effect on the growth and yield of sunflower.


2016 ◽  
Vol 120 ◽  
pp. 493-500 ◽  
Author(s):  
Razia Khan ◽  
Imtiaz Ahmad ◽  
Hizbullah Khan ◽  
Mohammad Ismail ◽  
Kashif Gul ◽  
...  

2012 ◽  
Vol 6 (4) ◽  
pp. 133-141 ◽  
Author(s):  
Ayoola . ◽  
Simeon Oluwatoyin ◽  
C.O. Akaeze

Sign in / Sign up

Export Citation Format

Share Document