scholarly journals Mechanisms of Initiation, Runout, and Rainfall Thresholds of Extreme-Precipitation-Induced Debris Flows

Author(s):  
Srikrishnan Siva Subramanian ◽  
Ali. P. Yunus ◽  
Faheed Jasin ◽  
Minu Treesa Abraham ◽  
Neelima Sathyam ◽  
...  

Abstract The frequency of unprecedented extreme precipitation events is increasing, and consequently, catastrophic debris flows occur in regions worldwide. Rapid velocity and long-runout distances of debris flow induce massive loss of life and damage to infrastructure. Despite extensive research, understanding the initiation mechanisms and defining early warning thresholds for extreme-precipitation-induced debris flows remain a challenge. Due to the nonavailability of extreme events in the past, statistical models cannot determine thresholds from historical datasets. Here, we develop a numerical model to analyze the initiation and runout of extreme-precipitation-induced runoff-generated debris flows and derive the Intensity-Duration (ID) rainfall threshold. We choose the catastrophic debris flow on 6 August 2020 in Pettimudi, Kerala, India, for our analysis. Our model satisfactorily predicts the accumulation thickness (7 m to 8 m) and occurrence time of debris flow compared to the benchmark. Results reveal that the debris flow was rapid, traveling with a maximum velocity of 9 m/s for more than 9 minutes. The ID rainfall threshold defined for the event suggests earlier thresholds are not valid for debris flow triggered by extreme precipitation. The methodology we develop in this study is helpful to derive ID rainfall thresholds for debris flows without historical data.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Stefano Segadelli ◽  
Federico Grazzini ◽  
Michele Adorni ◽  
Maria Teresa De Nardo ◽  
Anna Fornasiero ◽  
...  

In 2015 an intense rainfall event hit the Valleys of the Trebbia, Nure, and Aveto watercourses in the Northern Apennines. In about 6 h a mesoscale convective system deployed a stunning amount of precipitation of 340 mm, with an extreme hourly rainfall intensity of >100 mm/h. It triggered debris flows along slopes and stream channels, landslides and floods, which caused serious damages. Through the optimal combination of rainfall data and radar volumes, in this work we present a detailed rainfall analysis, which will serve as a basis to create a quantitative correlation with debris flows over elementary hydrological units. We aim at providing an objective basis for future predictions, starting from the recognition of the forcing meteorological events, and then arriving at the prediction of triggering phenomena and to the debris-flow type. We further provide seven observations/case studies on the effects of extreme-precipitation events on freshwater environments in small mountain catchments. Extreme-precipitation events are becoming more frequent and widespread globally but their ecological effects are still insufficiently understood. In general, the effects of extreme events on inland-waters’ ecosystems are highly context-dependent, ranging from deleterious to beneficial. We therefore highlight the necessity of further studies to characterize these effects in more depth to be able to include appropriate mitigation measures in environmental planning and stewardship.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuang Liu ◽  
Kaiheng Hu ◽  
Qun Zhang ◽  
Shaojie Zhang ◽  
Xudong Hu ◽  
...  

The impacts of destructive earthquakes on rainfall thresholds for triggering the debris flows have not yet been well investigated, due to lacks of data. In this study, we have collected the debris-flow records from the Wenchuan, Lushan, and Jiuzhaigou earthquake-affected areas in Sichuan Province, China. By using a meteorological dataset with 3 h and 0.1° resolutions, the dimensionless effective rainfall and rainfall intensity-duration relationships were calculated as the possible thresholds for triggering the debris flows. The pre- and post-seismic thresholds were compared to evaluate the impacts of the various intensities of earthquakes. Our results indicate that the post-quake thresholds are much smaller than the pre-seismic ones. The dimensionless effective rainfall shows the impacts of the Wenchuan, Lushan, and Jiuzhaigou earthquakes to be ca. 26, 27, and 16%, respectively. The Wenchuan earthquake has the most significant effect on lowering the rainfall intensity-duration curve. Rainfall threshold changes related to the moment magnitude and focal depth are discussed as well. Generally, this work may lead to an improved post-quake debris-flow warning strategy especially in sparsely instrumented regions.


2018 ◽  
Vol 18 (5) ◽  
pp. 1395-1409 ◽  
Author(s):  
Hua-Li Pan ◽  
Yuan-Jun Jiang ◽  
Jun Wang ◽  
Guo-Qiang Ou

Abstract. Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008–2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other threshold models and configurations shows that the selected approach is the most promising starting point for further studies on debris flow early warning systems in areas with a scarcity of data.


Ecology ◽  
2021 ◽  
Author(s):  
Alison K. Post ◽  
Kristin P. Davis ◽  
Jillian LaRoe ◽  
David L. Hoover ◽  
Alan K. Knapp

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 218
Author(s):  
Changjun Wan ◽  
Changxiu Cheng ◽  
Sijing Ye ◽  
Shi Shen ◽  
Ting Zhang

Precipitation is an essential climate variable in the hydrologic cycle. Its abnormal change would have a serious impact on the social economy, ecological development and life safety. In recent decades, many studies about extreme precipitation have been performed on spatio-temporal variation patterns under global changes; little research has been conducted on the regionality and persistence, which tend to be more destructive. This study defines extreme precipitation events by percentile method, then applies the spatio-temporal scanning model (STSM) and the local spatial autocorrelation model (LSAM) to explore the spatio-temporal aggregation characteristics of extreme precipitation, taking China in July as a case. The study result showed that the STSM with the LSAM can effectively detect the spatio-temporal accumulation areas. The extreme precipitation events of China in July 2016 have a significant spatio-temporal aggregation characteristic. From the spatial perspective, China’s summer extreme precipitation spatio-temporal clusters are mainly distributed in eastern China and northern China, such as Dongting Lake plain, the Circum-Bohai Sea region, Gansu, and Xinjiang. From the temporal perspective, the spatio-temporal clusters of extreme precipitation are mainly distributed in July, and its occurrence was delayed with an increase in latitude, except for in Xinjiang, where extreme precipitation events often take place earlier and persist longer.


Author(s):  
Maurizio Iannuccilli ◽  
Giorgio Bartolini ◽  
Giulio Betti ◽  
Alfonso Crisci ◽  
Daniele Grifoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document