scholarly journals miR-144-3p Regulates Vascular Smooth Muscle Cell Phenotypic Switch via FBN1

Author(s):  
Aiqi Lin ◽  
Xiaocui Kang ◽  
Yuqiong Jiao ◽  
Xiaochao Feng ◽  
Yi Xu ◽  
...  

Abstract Background: Carotid artery dissection (CAD) represents a commonly reported factor causing stroke in young and middle-aged adults. Vascular wall remodeling is one of its important pathogenetic mechanisms. FBN1 is a common pathogenic gene leading to Marfan syndrome, whose mutation can cause the formation of aneurysm and arterial dissection. It was recently demonstrated multiple miRNAs contribute to the development of arterial dissection, while miR-144-3p’s function is undefined.Methods: In the current study, vascular smooth muscle cells (VSMCs) were transfected with miR-144-3p mimic and inhibitor, as well as siFBN1 and miR-144-3p + siFBN1, to determine vascular smooth muscle’s contractile genes, extracellular matrix-associated proteins. In addition, miR-144-3p’s effects on cell proliferation, migration, adhesion, invasion and apoptosis were evaluated.Results: The results revealed miR-144-3p had elevated amounts, while the fibrillin-1 protein showed reduced expression in arterial dissection tissues. Meanwhile, FBN1 was shown to be a miR-144-3p target by dual-luciferase gene reporter assay. In response to miR-144-3p mimic transfection, decreased expression of VSMC contractile gene markers, increased apoptosis, and decreased proliferation, migration, and invasion were found.Conclusions: Overall, miR-144-3p affects the biological function of VSMCs by targeting and regulating FBN1, decreases the expression of contractile genes,transforms the phenotype and leads to vascular wall remodeling.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


Author(s):  
Qianqian Lu ◽  
Ying Li ◽  
Jiaping Lou ◽  
Pingzhen Li ◽  
Yi Gu ◽  
...  

Circular RNAs (circRNAs) are associated with the pathogenesis of human diseases, including atherosclerosis. Here, we undertook to investigate the biological role and mechanism of circRNA E3 ubiquitin-protein ligase (circ-CHFR) in atherosclerosis. The expression levels of circ-CHFR, miR-214-3p, and pregnancy-associated plasma protein A (PAPPA) were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in human aorta vascular smooth muscle cells (HA-VSMCs) exposed to oxidized low-density lipoprotein (ox-LDL). Cell proliferation, migration, and invasion capabilities were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT), and transwell assays, respectively. The relationship between miR-214-3p and circ-CHFR or PAPPA was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data showed that circ-CHFR was upregulated in HA-VSMCs after stimulation with ox-LDL. Downregulation of circ-CHFR inhibited the proliferation, migration, and invasion of HA-VSMCs exposed to ox-LDL. Mechanistically, circ-CHFR acted as a miR-214-3p sponge, and miR-214-3p was a molecular mediator of circ-CHFR regulation in ox-LDL-stimulated HA-VSMCs. PAPPA was a miR-214-3p target, and circ-CHFR regulated the expression of PAPPA by sponging miR-214-3p. Moreover, overexpression of miR-214-3p repressed the proliferation, migration, and invasion of ox-LDL-induced HA-VSMCs by decreasing PAPPA expression. Our findings suggest that the circ-CHFR/miR-214-3p/PAPPA axis regulates ox-LDL-induced proliferation, migration, and invasion in HA-VSMCs.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Wei Kong ◽  
Li Wang ◽  
Xue Bai ◽  
Bo Liu ◽  
Yi Zhu ◽  
...  

Migration of vascular smooth muscle cells (VSMCs) plays an essential role during vascular development, in response to vascular injury and during atherogenesis. Extensive studies have implicated the importance of extracellular matrix (ECM)-degrading proteinases during VSMCs migration. ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), a recently described family of proteinases, is capable of degrading vascular ECM proteins. However, the relevance of ADAMTS family members in cardiovascular disease is poorly understood. In this study, we sought to determine whether ADAMTS-7 is involved in VSMC migration and neointima formation in response to vascular injury. Denudation of rat carotid arteries with a balloon catheter led to an initial decrease of ADAMTS-7 protein level in injured compared with sham-operated arteries within the first 24 hours, followed by a subsequent increase during the 4 to 14 days after injury. In primary VSMCs, the pro-inflammatory cytokine TNF-α increased ADAMTS-7 mRNA level through transcriptional factors nuclear factor-kappa B and AP-1. VSMCs infected with ADAMTS-7 adenovirus (Ad-ADAMTS-7) greatly accelerated their migration and invasion in vitro . Conversely, suppression of ADAMTS-7 expression by small interfering RNA (siRNA) markedly retarded VSMC movement by 50% than that with scramble siRNA. At 7 days after injury, the neointimal area of the vascular wall was sixfold greater in Ad-ADAMTS-7-infected than that in Ad-GFP-infected vessels (3.10±0.88 vs. 0.52±0.28 ×10 4 μm 2 , n=8 per group, P <0.05). By contrast, perivascular administration of ADAMTS-7 siRNA, but not scramble siRNA to injured arteries resulted in prolonged ADAMTS-7 silencing and diminished neointimal thickening without affecting medial areas. This inhibitory effect was sustained up to 14 days after injury. As well, ADAMTS-7 mediated degradation of the vascular ECM cartilage oligomeric matrix protein (COMP) in injured vessels, which might facilitate VSMC migration and neointimal thickening. ADAMTS-7 directs VSMC migration and neointima formation and therefore may serve as a novel therapeutic target for vascular restenosis and atherogenesis.


2007 ◽  
Vol 7 ◽  
pp. 1422-1439 ◽  
Author(s):  
Magnus Bäck

The accumulation of immune cells during vascular inflammation leads to formation of leukotrienes (LTs). While macrophages represent a major source of LT biosynthesis in the proximity of the vascular wall, activated T lymphocytes may, in addition, play a key regulatory role on macrophage expression of LT-forming enzymes. Within the vascular wall, LTs activate cell surface receptors of the BLT and CysLT subtypes expressed on vascular smooth muscle and endothelial cells. The LT receptor expression on those cells is highly dependent on transcriptional regulation by pro- and anti-inflammatory mediators. LT receptor activation on vascular smooth muscle cells is associated with both directly and indirectly induced vasoconstriction, as well as intimal hyperplasia through stimulation of migration and proliferation. On the other hand, endothelial LT receptors induce vasorelaxation and leukocyte recruitment and adhesion. Results fromin vitroandin vivostudies of LT receptor antagonists indicate potential beneficial effects in atherosclerosis and other inflammatory cardiovascular diseases.


2001 ◽  
Vol 281 (4) ◽  
pp. H1621-H1629 ◽  
Author(s):  
Pontus Strålin ◽  
Stefan L. Marklund

Oxygen free radicals have been suggested to play important roles in atherogenesis and other pathological processes in the blood vessel wall. The vascular wall contains large amounts of extracellular superoxide dismutase (EC-SOD), which is produced and secreted to the extracellular space by smooth muscle cells. In this study, we investigated the influence of factors regulating tension and proliferation of vascular smooth muscle cells and of some interstitial matrix components on EC-SOD expression. The expression and secretion of EC-SOD were upregulated by histamine, vasopressin, oxytocin, endothelin-1, angiotensin II, serotonin, heparin, and heparan sulfate and were downregulated by platelet-derived growth factors-AA and -BB, acidic and basic fibroblast growth factors, and epidermal growth factor. The responses were slow and developed over several days. The findings suggest that various physiological and pathological conditions might markedly influence EC-SOD expression, significantly altering the susceptibility of the vascular wall to effects of the superoxide radical.


Sign in / Sign up

Export Citation Format

Share Document