gene reporter assay
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 28)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Chao Han ◽  
Juan Zheng ◽  
Fengyi Wang ◽  
Qingyang Lu ◽  
Qingfa Chen ◽  
...  

Organic cation transporter 2 (OCT2), encoded by the SLC22A2 gene, is the main cation transporter on the basolateral membrane of proximal tubular cells. OCT2 facilitates the entry step of the vectorial transport of most cations from the peritubular space into the urine. OCT2 downregulation in kidney disease models is apparent, yet not clear from a mechanistic vantage point. The aim of this study was to explore the role of inflammation, a common thread in kidney disease, and NF-kB in OCT2 modulation and tubular secretion. Among the OCTs, OCT2 was found consistently downregulated in the kidney of rats with chronic kidney disease (CKD) or acute kidney injury (AKI) and in patients diagnosed with CKD, and it was associated with the upregulation of TNFα renal expression. Exposure to TNFα reduced the expression and function of OCT2 in primary renal proximal tubule epithelial cells (RPTEC). Silencing or pharmacological inhibition of NF-kB rescued the expression of OCT2 in the presence of TNFα, indicating that OCT2 repression was NF-kB-dependent. In silico prediction coupled to gene reporter assay demonstrated the presence of at least one functional NF-kB cis-element upstream the transcription starting site of the SLC22A2 gene. Acute inflammation triggered by lipopolysaccharide injection induced TNFα expression and the downregulation of OCT2 in rat kidney. The inflammation did reduce the active secretion of the cation Rhodamine 123, with no impairment of the glomerular filtration. In conclusion, the NF-kB pathway plays a major role in the transcriptional regulation of OCT2 and, in turn, in the overall renal secretory capacity.


Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Koji Nagao ◽  
Nao Inoue ◽  
Kunio Suzuki ◽  
Takeshi Shimizu ◽  
Teruyoshi Yanagita

Dietary sterols are catabolized into various substances in the intestinal tract. Dietary 3-oxo derivatives of cholesterol and plant sterols (e.g., cholest-4-en-3-one and campest-5-en-3-one) have been shown to have anti-obesity effects. In this study, we tested whether feeding cholest-5-en-3-one (5-cholestenone), a cholesterol metabolite, to db/db mice protects them from obesity-associated metabolic disorders. In db/db mice, dietary 5-cholestenone significantly alleviated hepatomegaly and elevated serum triglyceride levels; however, the effect was not sufficient to improve hepatic steatosis and obesity. On the other hand, hyperglycemia and severe hyperinsulinemia in control db/db mice were markedly attenuated in 5-cholestenone-fed db/db mice. The production of inflammatory cytokines, such as monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-alpha (TNFα), was decreased, suggesting that the suppressive actions of 5-cholestenone were attributable to the alleviation of chronic inflammation in db/db mice. Additionally, 5-cholestenone showed an inhibitory effect on TNFα-induced nuclear factor kappa B (NFκB) activation in the NFκB luciferase gene reporter assay. These results suggest that obesity-induced abnormal glucose metabolism could be alleviated in 5-cholestenone-fed db/db mice by reducing the production of inflammatory cytokines through suppression of the NFκB signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yupeng Wu ◽  
Yu Zhou ◽  
Haiying Gao ◽  
Yajun Wang ◽  
Qingyu Cheng ◽  
...  

Colorectal cancer (CRC) is a highly malignant tumor associated with poor prognosis, yet the molecular mechanisms are not fully understood. In this study, we showed that LYAR, a nucleolar protein, is expressed at a higher level in CRC tissue than in adjacent normal tissue and that LYAR expression is closely associated with distant CRC metastasis. LYAR not only significantly promotes the migration and invasion of CRC cells in vitro, but knockdown (KD) of LYAR in CRC cells also inhibits xenograft tumor metastasis in vivo. Microarray analysis of LYAR KD cells combined with a chromatin immunoprecipitation (ChIP) assay, gene reporter assay, and rescue experiment indicated that FSCN1 (encoding fascin actin-bundling protein 1 (Fascin-1)) serves as a novel key regulator of LYAR-promoted migration and invasion of CRC cells. Knockdown of FSCN1 significantly inhibits subcutaneous tumorigenesis of CRC cells and leads to the downregulation of FASN and SCD, genes encoding key enzymes in fatty acid synthesis. In summary, this study reveals a novel mechanism by which LYAR promotes tumor cell migration and invasion by upregulating FSCN1 expression and affecting fatty acid metabolism in CRC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zixin Hou ◽  
Ji Chen ◽  
Huan Yang ◽  
Xiaoling Hu ◽  
Fengrui Yang

AbstractDiabetic peripheral neuropathy (DPN) is a frequently occurring chronic complication of diabetes. In this study, we aim to explore the regulatory mechanism of protein inhibitor of activated STAT1 (PIAS1) in DPN in terms of autophagy and apoptosis of Schwann cells. The SUMOlation of PPAR-γ by PIAS1 was examined, and ChIP was performed to verify the binding of PPAR-γ to miR-124 promoter region. Dual-luciferase gene reporter assay was used to validate the binding affinity between miR-124 and EZH2/STAT3. Following loss‐ and gain‐of-function experiments, in vitro assays in high glucose-treated Schwann cells (SC4) and in vivo assays in db/db and ob/ob mice were performed to detect the effects of PIAS1 on autophagy and apoptosis of Schwann cells as well as symptoms of DPN by regulating the PPAR-γ-miR-124-EZH2/STAT3. The expression of PIAS1, PPAR-γ, and miR-124 was downregulated in the sciatic nerve tissue of diabetic mice. PIAS1 enhanced the expression of PPAR-γ through direct binding and SUMOlation of PPAR-γ. PPAR-γ enhanced the expression of miR-124 by enhancing the promoter activity of miR-124. Furthermore, miR-124 targeted and inversely modulated EZH2 and STAT3, promoting the autophagy of Schwann cells and inhibiting their apoptosis. In vivo experiments further substantiated that PIAS1 could promote the autophagy and inhibit the apoptosis of Schwann cells through the PPAR-γ-miR-124-EZH2/STAT3 axis. In conclusion, PIAS1 promoted SUMOlation of PPAR-γ to stabilize PPAR-γ expression, which upregulated miR-124 to inactivate EZH2/STAT3, thereby inhibiting apoptosis and promoting autophagy of Schwann cells to suppress the development of DPN.


2021 ◽  
Vol 11 (12) ◽  
pp. 2415-2420
Author(s):  
Sujuan Wu ◽  
Jinyan Wang ◽  
Tao Niu

Exosomes can transmit microRNAs (miRNAs) and other substances between different cells. Bone marrow mesenchymal stem cells (BMSCs) can migrate to tumor sites. They are related to a variety of tumors, but the role of miR-126-3p exosomes derived from BMSCs in gastric cancer has not been elucidated. miR-126-3p overexpressing BMSCs were established and cell supernatant exosomes were collected followed by measuring miR-126-3p level by PCR, ESM1 expression by western blot, targeting relationship by dual luciferase gene reporter assay along with analysis of cell proliferation, invasion and apoptosis. The addition of BMSCs exosomes to gastric cancer cells reduced the miR-126-3p level, promoted ESM1 expression, and worsened the biological behaviors of tumor cells. miR-126-3p-overexpressed BMSCs exosomes promoted miR-126-3p expression, resulting in the decrease of ESM1 expression and inhibiting the further deterioration. In conclusion, BMSCs can inhibit the increase of miR-126-3p expression and ESM1 to inhibit the deterioration of biological behaviors of gastric cancer cells.


2021 ◽  
Author(s):  
Aiqi Lin ◽  
Xiaocui Kang ◽  
Yuqiong Jiao ◽  
Xiaochao Feng ◽  
Yi Xu ◽  
...  

Abstract Background: Carotid artery dissection (CAD) represents a commonly reported factor causing stroke in young and middle-aged adults. Vascular wall remodeling is one of its important pathogenetic mechanisms. FBN1 is a common pathogenic gene leading to Marfan syndrome, whose mutation can cause the formation of aneurysm and arterial dissection. It was recently demonstrated multiple miRNAs contribute to the development of arterial dissection, while miR-144-3p’s function is undefined.Methods: In the current study, vascular smooth muscle cells (VSMCs) were transfected with miR-144-3p mimic and inhibitor, as well as siFBN1 and miR-144-3p + siFBN1, to determine vascular smooth muscle’s contractile genes, extracellular matrix-associated proteins. In addition, miR-144-3p’s effects on cell proliferation, migration, adhesion, invasion and apoptosis were evaluated.Results: The results revealed miR-144-3p had elevated amounts, while the fibrillin-1 protein showed reduced expression in arterial dissection tissues. Meanwhile, FBN1 was shown to be a miR-144-3p target by dual-luciferase gene reporter assay. In response to miR-144-3p mimic transfection, decreased expression of VSMC contractile gene markers, increased apoptosis, and decreased proliferation, migration, and invasion were found.Conclusions: Overall, miR-144-3p affects the biological function of VSMCs by targeting and regulating FBN1, decreases the expression of contractile genes,transforms the phenotype and leads to vascular wall remodeling.


Author(s):  
Marta Gea ◽  
Sara Bonetta ◽  
Daniele Marangon ◽  
Francesco Antonio Pitasi ◽  
Caterina Armato ◽  
...  

Wildland fires, increasing in recent decades in the Mediterranean region due to climate change, can contribute to PM levels and composition. This study aimed to investigate biological effects of PM2.5 (Ø < 2.5 µm) and PM10 (Ø < 10 µm) collected near a fire occurred in the North-West of Italy in 2017 and in three other areas (urban and rural areas). Organic extracts were assessed for mutagenicity using Ames test (TA98 and TA100 strains), cell viability (WST-1 and LDH assays) and genotoxicity (Comet assay) with human bronchial cells (BEAS-2B) and estrogenic activity using a gene reporter assay (MELN cells). In all sites, high levels of PM10 and PM2.5 were measured during the fire suggesting that near and distant sites were influenced by fire pollutants. The PM10 and PM2.5 extracts induced a significant mutagenicity in all sites and the mutagenic effect was increased with respect to historical data. All extracts induced a slight increase of the estrogenic activity but a possible antagonistic activity of PM samples collected near fire was observed. No cytotoxicity or DNA damage was detected. Results confirm that fires could be relevant for human health, since they can worsen the air quality increasing PM concentrations, mutagenic and estrogenic effects.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1584
Author(s):  
Da-Bin Hwang ◽  
Shin-Young Kim ◽  
Dong-Hoon Won ◽  
Changuk Kim ◽  
Yoo-Sub Shin ◽  
...  

Animal models are used for preclinical toxicity studies, and the need for in vitro alternative methods has been strongly raised. Our study aims to elucidate the potential mechanism of change in EGR1 expression under situations of toxic injury and to develop an Egr1 promoter–luciferase gene reporter assay for an in vitro alternative method for toxicity prediction in drug discovery. We first found an increase in early growth response-1 (EGR1) mRNA/protein expressions in the liver and kidney of cisplatin-treated injured rats. Additionally, the EGR1 protein level was also elevated under situations of ocular injury after sodium lauryl sulfate (SLS) eye drops. These in vivo observations on injury-related EGR1 induction were confirmed by in vitro studies, where human corneal epithelial cells were treated with representative irritants (SLS and benzalkonium chloride) and 17 chemicals having different UN GHS irritant categories. Additionally, our results suggest the involvement of ERK, JNK, p38 MAPK pathways in EGR1 elevation in response to gamma-butyrolactone-induced injury. As EGR1 is considered to be a pivotal factor in proliferation and regeneration, siRNA-mediated knockdown of Egr1 promoted cytotoxic potential through a delay of injury-related recovery. More importantly, the elevation of promoter activities was observed by various irritants in cells transfected with Egr1 promoter-reporter vector. In conclusion, Egr1 can be a potential biomarker in a promoter-reporter system to improve the accuracy of in vitro predictions for ocular irritation.


Author(s):  
Yongqi Wang ◽  
Xiaoqing Wang ◽  
Hong Zhang ◽  
Biao Han ◽  
Yuanmei Ye ◽  
...  

ObjectiveMacrophages function as key orchestrators in the pathogenesis of acute lung injury (ALI). The current study sets out to investigate the molecular mechanism of transforming growth factor-β (TGFβ1) in the regulation of M1 alveolar macrophage polarization in ALI by modulating DNA methyltransferase 1 (DNMT1), along with the microRNA (miR)-124/Pellino 1 (PELI1)/interferon regulatory factor 5 (IRF5) axis.MethodsFirst, ALI mouse models were established, and the proportion of M1 and M2 macrophages in mouse lung tissues was detected using flow cytometry. The targeting relationship between miR-124 and PELI1 was verified with the help of a dual luciferase gene reporter assay. Following TGFβ1 knockdown, RT-qPCR and Western blot assay were performed to analyze the expression patterns of TGFβ1, DNMT1, miR-124, and PELI1 and M1/M2 polarization markers in the lung tissues of ALI mice. Immunofluorescence was further employed to detect nuclear translocation of IRF5 in macrophages.ResultsThe polarization of M1 macrophages was found to be positively correlated with the severity of lung injury. TGFβ1, DNMT1, PELI1 were highly expressed, while miR-124 was down-regulated in ALI mice, and IRF5 was primarily distributed in the nucleus. TGFβ1 promoted the polarization of M1 alveolar macrophages by up-regulating DNMT1. Furthermore, DNMT1 down-regulated the expression of miR-124, which led to enhancement of M1 alveolar macrophage polarization. Meanwhile, over-expression of miR-124 inhibited the nuclear translocation of IRF5 and suppressed M1 alveolar macrophage polarization. On the other hand, over-expression of PELI1 reversed the above trends.ConclusionCollectively, our findings indicated that TGFβ1 can promote the expression of DNMT1, which down-regulates miR-124 to activate PELI1 and nuclear translocation of IRF5, thereby aggravating ALI in mice.


Author(s):  
Wenfei Xia ◽  
Yun Liu ◽  
Teng Cheng ◽  
Tao Xu ◽  
Menglu Dong ◽  
...  

Breast cancer (BC) represents the most commonly diagnosed malignancy among women. Long non-coding RNAs (lncRNAs) can be transferred by extracellular vesicles (EVs) to participate in BC progression. This study demonstrated that SNHG16 expression was significantly increased in BC tissues and cells. Overexpression of SNHG16 promoted the migration, invasion, and epithelial–mesenchymal transition (EMT) of BC cells. SNHG16 was carried by EVs. Bioinformatics analysis predicted that SNHG16 regulated PPAPDC1A expression by sponging miR-892b, which was confirmed by RNA-fluorescence in situ hybridization (FISH), RT-qPCR, dual-luciferase gene reporter assay, and RNA immunoprecipitation (RIP). MDA-MB-157 and HS578T cells were transfected with pcDNA3.1-SNHG16, miR-892b-mimic, or si-PPAPDC1A for functional rescue experiments in vitro, and the cells were treated with MDA-MB-231 cell-derived EVs. The results confirmed that enhanced miR-892b expression partially eliminated the increase of migration, invasion, and EMT of BC cells mediated by SNHG16 or EVs. The lung metastasis model in nude mice was established by injecting HS578T cells via tail vein. The results showed that si-SNHG16 reduced the metastatic nodules and decreased the vimentin expression. In conclusion, EVs derived from BC cells transferred SNHG16 via the miR-892b/PPAPDC1A axis, thus promoting EMT, migration, and invasion of BC.


Sign in / Sign up

Export Citation Format

Share Document