scholarly journals Starbursts with suppressed velocity dispersion revealed in a forming cluster at z = 2.51

Author(s):  
Mengyuan Xiao ◽  
Tao Wang ◽  
David Elbaz ◽  
Daisuke Iono ◽  
Xing Lu ◽  
...  

Abstract One of the most prominent features of galaxy clusters is the presence of a dominant population of massive ellipticals in their cores. Stellar archaeology suggests that these gigantic beasts assembled most of their stars in the early Universe via intense starbursts. However, the role of dense environments and their detailed physical mechanisms in triggering starburst activities remain unknown. Here we report spatially-resolved Atacama Large Millimeter/submillimeter Array (ALMA) observations of the molecular gas, with a resolution of about 2.5 kiloparsecs, toward a forming galaxy cluster core with intense starburst galaxies at z = 2.51. In contrast to starburst galaxies in the field often associated with galaxy mergers or highly turbulent gaseous disks, our observations show that the two starbursts in the cluster exhibit dynamically cold (rotation-dominated) gas-rich disks. Their gas disks have extremely low velocity dispersion (σ ∼ 20 − 30 km s−1 ), three times lower than their field counterparts at similar redshifts. The high gas fraction and suppressed velocity dispersion yield gravitationally unstable gas disks, which enables highly efficient star formation. The suppressed velocity dispersion, likely induced by accretion of co-rotating and co-planar cold gas, might serve as an essential avenue to trigger starbursts in forming galaxy clusters at high redshift.

2016 ◽  
Vol 25 (10) ◽  
pp. 1630023 ◽  
Author(s):  
Elia S. Battistelli ◽  
Carlo Burigana ◽  
Paolo de Bernardis ◽  
Alexander A. Kirillov ◽  
Gastao B. Lima Neto ◽  
...  

In recent years, significant progress has been made in building new galaxy clusters samples, at low and high redshifts, from wide-area surveys, particularly exploiting the Sunyaev–Zel’dovich (SZ) effect. A large effort is underway to identify and characterize these new systems with optical/NIR and X-ray facilities, thus opening new avenues to constraint cosmological models using structure growth and geometrical tests. A census of galaxy clusters sets constraints on reionization mechanisms and epochs, which need to be reconciled with recent limits on the reionization optical depth from cosmic microwave background (CMB) experiments. Future advances in SZ effect measurements will include the possibility to (unambiguously) measure directly the kinematic SZ effect, to build an even larger catalogue of galaxy clusters able to study the high redshift universe, and to make (spatially-)resolved galaxy cluster maps with even spectral capability to (spectrally-)resolve the relativistic corrections of the SZ effect.


2019 ◽  
Vol 490 (1) ◽  
pp. 135-155 ◽  
Author(s):  
Seong-Kook Lee ◽  
Myungshin Im ◽  
Minhee Hyun ◽  
Bomi Park ◽  
Jae-Woo Kim ◽  
...  

ABSTRACT High-redshift galaxy clusters, unlike local counterparts, show diverse star formation activities. However, it is still unclear what keeps some of the high-redshift clusters active in star formation. To address this issue, we performed a multiobject spectroscopic observation of 226 high-redshift (0.8 < z < 1.3) galaxies in galaxy cluster candidates and the areas surrounding them. Our spectroscopic observation reveals six to eight clusters/groups at z ∼ 0.9 and z ∼ 1.3. The redshift measurements demonstrate the reliability of our photometric redshift measurements, which in turn gives credibility for using photometric redshift members for the analysis of large-scale structures (LSSs). Our investigation of the large-scale environment (∼10 Mpc) surrounding each galaxy cluster reveals LSSs – structures up to ∼10 Mpc scale – around many of, but not all, the confirmed overdensities and the cluster candidates. We investigate the correlation between quiescent galaxy fraction of galaxy overdensities and their surrounding LSSs, with a larger sample of ∼20 overdensities including photometrically selected overdensities at 0.6 < z < 0.9. Interestingly, galaxy overdensities embedded within these extended LSSs show a lower fraction of quiescent galaxies ($\sim 20{{\ \rm per\ cent}}$) than isolated ones at similar redshifts (with a quiescent galaxy fraction of $\sim 50 {{\ \rm per\ cent}}$). Furthermore, we find a possible indication that clusters/groups with a high quiescent galaxy fraction are more centrally concentrated. Based on these results, we suggest that LSSs are the main reservoirs of gas and star-forming galaxies to keep galaxy clusters fresh and extended in size at z ∼ 1.


2020 ◽  
Vol 499 (1) ◽  
pp. 559-572
Author(s):  
Carlo Nipoti ◽  
Carlo Cannarozzo ◽  
Francesco Calura ◽  
Alessandro Sonnenfeld ◽  
Tommaso Treu

ABSTRACT The stellar initial mass function (IMF) is believed to be non-universal among early-type galaxies (ETGs). Parametrizing the IMF with the so-called IMF mismatch parameter αIMF, which is a measure of the stellar mass-to-light ratio of an ensemble of stars and thus of the ‘heaviness’ of its IMF, one finds that for ETGs αe (i.e. αIMF integrated within the effective radius Re) increases with σe (the line-of-sight velocity dispersion σlos integrated within Re) and that, within the same ETG, αIMF tends to decrease outwards. We study the effect of dissipationless (dry) mergers on the distribution of the IMF mismatch parameter αIMF in ETGs using the results of binary major and minor merging simulations. We find that dry mergers tend to make the αIMF profiles of ETGs shallower, but do not alter significantly the shape of the distributions in the spatially resolved σlos–αIMF space. Individual galaxies undergoing dry mergers tend to decrease their αe, due to erosion of αIMF gradients and mixing with stellar populations with lighter IMF. Their σe can either decrease or increase, depending on the merging orbital parameters and mass ratio, but tends to decrease for cosmologically motivated merging histories. The αe–σe relation can vary with redshift as a consequence of the evolution of individual ETGs: based on a simple dry-merging model, ETGs of given σe are expected to have higher αe at higher redshift, unless the accreted satellites are so diffuse that they contribute negligibly to the inner stellar distribution of the merger remnant.


1999 ◽  
Vol 522 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Kim‐Vy H. Tran ◽  
Daniel D. Kelson ◽  
Pieter van Dokkum ◽  
Marijn Franx ◽  
Garth D. Illingworth ◽  
...  

2020 ◽  
Vol 15 (S359) ◽  
pp. 22-26
Author(s):  
Carlos Gómez-Guijarro

AbstractStarbursting dust-rich galaxies are capable of assembling large amounts of stellar mass very quickly. They have been proposed as progenitors of the population of compact massive quiescent galaxies at z ˜ 2. To test this connection, we present a detailed spatially-resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ˜ 4.5. We found that the systems are undergoing minor mergers and the bulk star formation is located in extremely compact regions. On the other hand, optically-compact star forming galaxies have also been proposed as immediate progenitors of compact massive quiescent galaxies. Were they formed in slow secular processes or in rapid merger-driven starbursts? We explored the location of galaxies with respect to star-forming and structural relations and study the burstiness of star formation. Our results suggest that compact star-forming galaxies could be starbursts winding down and eventually becoming quiescent.


2021 ◽  
Vol 503 (1) ◽  
pp. 1327-1344
Author(s):  
K Ehlert ◽  
R Weinberger ◽  
C Pfrommer ◽  
V Springel

ABSTRACT The study of velocity fields of the hot gas in galaxy clusters can help to unravel details of microphysics on small scales and to decipher the nature of feedback by active galactic nuclei (AGN). Likewise, magnetic fields as traced by Faraday rotation measurements (RMs) inform about their impact on gas dynamics as well as on cosmic ray production and transport. We investigate the inherent relationship between large-scale gas kinematics and magnetic fields through non-radiative magnetohydrodynamical simulations of the creation, evolution, and disruption of AGN jet-inflated lobes in an isolated Perseus-like galaxy cluster, with and without pre-existing turbulence. In particular, we connect cluster velocity measurements with mock RM maps to highlight their underlying physical connection, which opens up the possibility of comparing turbulence levels in two different observables. For single-jet outbursts, we find only a local impact on the velocity field, i.e. the associated increase in velocity dispersion is not volume-filling. Furthermore, in a setup with pre-existing turbulence, this increase in velocity dispersion is largely hidden. We use mock X-ray observations to show that at arcmin resolution, the velocity dispersion is therefore dominated by existing large-scale turbulence and is only minimally altered by the presence of a jet. For the velocity structure of central gas uplifted by buoyantly rising lobes, we find fast, coherent outflows with low velocity dispersion. Our results highlight that projected velocity distributions show complex structures, which pose challenges for the interpretation of observations.


2020 ◽  
Vol 228 ◽  
pp. 00012 ◽  
Author(s):  
F. Kéruzoré ◽  
R. Adam ◽  
P. Ade ◽  
P. André ◽  
A. Andrianasolo ◽  
...  

High-resolution mapping of the hot gas in galaxy clusters is a key tool for cluster-based cosmological analyses. Taking advantage of the NIKA2 millimeter camera operated at the IRAM 30-m telescope, the NIKA2 SZ Large Program seeks to get a high-resolution follow-up of 45 galaxy clusters covering a wide mass range at high redshift in order to re-calibrate some of the tools needed for the cosmological exploitation of SZ surveys. We present the second cluster analysis of this program, targeting one of the faintest sources of the sample in order to tackle the difficulties in data reduction for such faint, low-SNR clusters. In this study, the main challenge is the precise estimation of the contamination by sub-millimetric point sources, which greatly affects the tSZ map of the cluster. We account for this contamination by performing a joint fit of the SZ signal and of the flux density of the compact sources. A prior knowledge of these fluxes is given by the adjustment of the SED of each source using data from both NIKA2 and the Herschel satellite. The first results are very promising and demonstrate the possibility to estimate thermodynamic properties with NIKA2, even in a compact cluster heavily contaminated by point sources.


2019 ◽  
Vol 490 (4) ◽  
pp. 5770-5787 ◽  
Author(s):  
Matthew C Chan ◽  
John P Stott

ABSTRACT We introduce Deep-CEE (Deep Learning for Galaxy Cluster Extraction and Evaluation), a proof of concept for a novel deep learning technique, applied directly to wide-field colour imaging to search for galaxy clusters, without the need for photometric catalogues. This technique is complementary to traditional methods and could also be used in combination with them to confirm existing galaxy cluster candidates. We use a state-of-the-art probabilistic algorithm, adapted to localize and classify galaxy clusters from other astronomical objects in Sloan Digital Sky Survey imaging. As there is an abundance of labelled data for galaxy clusters from previous classifications in publicly available catalogues, we do not need to rely on simulated data. This means we keep our training data as realistic as possible, which is advantageous when training a deep learning algorithm. Ultimately, we will apply our model to surveys such as Large Synoptic Survey Telescope and Euclid to probe wider and deeper into unexplored regions of the Universe. This will produce large samples of both high-redshift and low-mass clusters, which can be utilized to constrain both environment-driven galaxy evolution and cosmology.


2020 ◽  
Vol 498 (3) ◽  
pp. 3852-3862 ◽  
Author(s):  
José A Benavides ◽  
Laura V Sales ◽  
Mario G Abadi

ABSTRACT We study the role of group infall in the assembly and dynamics of galaxy clusters in ΛCDM. We select 10 clusters with virial mass M200 ∼ 1014 $\rm M_\odot$ from the cosmological hydrodynamical simulation Illustris and follow their galaxies with stellar mass M⋆ ≥ 1.5 × 108 $\rm M_\odot$. A median of ${\sim}38{{\ \rm per\ cent}}$ of surviving galaxies at z = 0 is accreted as part of groups and did not infall directly from the field, albeit with significant cluster-to-cluster scatter. The evolution of these galaxy associations is quick, with observational signatures of their common origin eroding rapidly in 1–3 Gyr after infall. Substructure plays a dominant role in fostering the conditions for galaxy mergers to happen, even within the cluster environment. Integrated over time, we identify (per cluster) an average of 17 ± 9 mergers that occur in infalling galaxy associations, of which 7 ± 3 occur well within the virial radius of their cluster hosts. The number of mergers shows large dispersion from cluster to cluster, with our most massive system having 42 mergers above our mass cut-off. These mergers, which are typically gas rich for dwarfs and a combination of gas rich and gas poor for M⋆ ∼ 1011 $\rm M_\odot$, may contribute significantly within ΛCDM to the formation of specific morphologies, such as lenticulars (S0) and blue compact dwarfs in groups and clusters.


2018 ◽  
Vol 610 ◽  
pp. A85 ◽  
Author(s):  
Tim Schrabback ◽  
Mischa Schirmer ◽  
Remco F. J. van der Burg ◽  
Henk Hoekstra ◽  
Axel Buddendiek ◽  
...  

We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7−020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.′′35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06−0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal.


Sign in / Sign up

Export Citation Format

Share Document