scholarly journals Three-Dimensional Transient Finite Element Cooling Simulation For Injection Molding Tools

Author(s):  
Lu Chen ◽  
Xiaowei Zhou ◽  
Zhigao Huang ◽  
Huamin Zhou

Abstract Plastic injection molding is one of the most popular manufacturing processes for mass production, and optimizing the mold cooling system is critical for reducing the cycle time and improving the final part quality. Conventional cooling simulation uses the boundary element method to perform the cycle-averaged analysis, which is a simplification due to computational resources limitation. This paper develops a three-dimensional transient cooling simulation method based on the finite element method, which can simulate the complex mold system accurately and efficiently. It is shown that this method finishes the transient cooling analysis in 478 seconds on the real-world injection molding mold with more than 6.9 million tetrahedral elements. Its accuracy is compared against the experimental results with the maximum temperature error less than 4%, and the average temperature error less than 1%.

2013 ◽  
Vol 764 ◽  
pp. 95-101 ◽  
Author(s):  
Xiu Qing Fu ◽  
Jie Yu Xian ◽  
Min Kang ◽  
Mao Hua Xiao

The processing simulation method of numerical control electrochemical turning (NC-ECT) was presented based on the finite element method (FEM) in this paper. The three-dimensional analysis model of the electric field built in ANSYS software was solved. The current density distribution and the theoretical values of material removed depth per revolution (MRDPR) in different time on the anode were obtained. The experiments were carried out on the NC-ECT lathe, and the measured values of MRDPR were measured, which were compared with the theoretical values. It is indicated that the maximum percentage error between the theoretical values and the measured values is smaller and the simulation method meets the accuracy of the engineering calculations.


2017 ◽  
Vol 8 (1) ◽  
pp. 137-154 ◽  
Author(s):  
Yao Zhao ◽  
Changcheng Hu ◽  
Hongbao Dong ◽  
Hua Yuan

Abstract. Local line rolling forming is a common forming approach for the complex curvature plate of ships. However, the processing mode based on artificial experience is still applied at present, because it is difficult to integrally determine relational data for the forming shape, processing path, and process parameters used to drive automation equipment. Numerical simulation is currently the major approach for generating such complex relational data. Therefore, a highly precise and effective numerical computation method becomes crucial in the development of the automated local line rolling forming system for producing complex curvature plates used in ships. In this study, a three-dimensional elastoplastic finite element method was first employed to perform numerical computations for local line rolling forming, and the corresponding deformation and strain distribution features were acquired. In addition, according to the characteristics of strain distributions, a simplified deformation simulation method, based on the deformation obtained by applying strain was presented. Compared to the results of the three-dimensional elastoplastic finite element method, this simplified deformation simulation method was verified to provide high computational accuracy, and this could result in a substantial reduction in calculation time. Thus, the application of the simplified deformation simulation method was further explored in the case of multiple rolling loading paths. Moreover, it was also utilized to calculate the local line rolling forming for the typical complex curvature plate of ships. Research findings indicated that the simplified deformation simulation method was an effective tool for rapidly obtaining relationships between the forming shape, processing path, and process parameters.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1421
Author(s):  
Michał Szulborski ◽  
Sebastian Łapczyński ◽  
Łukasz Kolimas ◽  
Łukasz Kozarek ◽  
Desire Dauphin Rasolomampionona ◽  
...  

In this paper, a detailed three-dimensional, transient, finite element method of fuse link NH000 gG 100 A is proposed. The thermal properties during the operation of the fuses under nominal (100 A) and custom conditions (110 and 120 A) are the main focus of the analyses that were conducted. The work concerns both the outside elements of the fuse link (ceramic body) and the elements inside (current circuit). Both the distribution of the electric current and its impact on the temperature of the construction parts of the fuses during their operating mode have been described. Temperature distribution, power losses and energy dissipation were measured using a numerical model. In order to verify and validate the model, two independent teams of scientists executed experimental research, during which the temperature was measured on different parts of the device involving the rated current. Finally, the two sets of results were put together and compared with those obtained from the simulation tests. A possible significant correlation between the results of the empirical tests and the simulation work was highlighted.


Sign in / Sign up

Export Citation Format

Share Document