CRYSTAL STRUCTURE OF THE RARE-EARTH HYDRIDES. X-RAY DIFFRACTION BY RARE- EARTH HYDRIDE AMALGAMS

1956 ◽  
Author(s):  
JAMES C. WARF ◽  
WILLIAM L. KORST
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Zoller ◽  
Hubert Huppertz

AbstractThe rare earth oxoborates REB5O8(OH)2 (RE = Ho, Er, Tm) were synthesized in a Walker-type multianvil apparatus at a pressure of 2.5 GPa and a temperature of 673 K. Single-crystal X-ray diffraction data provided the basis for the structure solution and refinement. The compounds crystallize in the monoclinic space group C2 (no. 5) and are composed of a layer-like structure containing dreier and sechser rings of corner sharing [BO4]5− tetrahedra. The rare earth metal cations are coordinated between two adjacent sechser rings. Further characterization was performed utilizing IR spectroscopy.


Author(s):  
Rongqing Shang ◽  
An T. Nguyen ◽  
Allan He ◽  
Susan M. Kauzlarich

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 625-634 ◽  
Author(s):  
Bastian Reker ◽  
Samir F. Matar ◽  
Ute Ch. Rodewald ◽  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen

Small single crystals of the Sm5Ge4-type (space group Pnma) germanides RE2Nb3Ge4 (RE = Sc, Y, Gd-Er, Lu) and Sc2Ta3Ge4 were synthesized by arc-melting of the respective elements. The samples were characterized by powder and single-crystal X-ray diffraction. In all structures, except for Sc2.04Nb2.96Ge4 and Sc2.19Ta2.81Ge4, the rare earth and niobium atoms show full ordering on the three crystallographically independent samarium sites of the Sm5Ge4 type. Two sites with coordination number 6 are occupied by niobium, while the slightly larger site with coordination number 7 is filled with the rare earth element. Small homogeneity ranges with RE=Nb and RE=Ta mixing can be expected for all compounds. The ordered substitution of two rare earth sites by niobium or tantalum has drastic effects on the coordination number and chemical bonding. This was studied for the pair Y5Ge4/Y2Nb3Ge4. Electronic structure calculations show larger charge transfer from yttrium to germanium for Y5Ge4, contrary to Y2Nb3Ge4 which shows stronger covalent bonding due to the presence of Nb replacing Y at two sites


1988 ◽  
Vol 133 ◽  
Author(s):  
C. T. Liu ◽  
J. A. Horton ◽  
D. G. Petitifor

ABSTRACTRare-earth elements including Y, Er and Sc were added to AlTi3 for stabilizing the Ll2 ordered crystal structure, as predicted by the AB3 structure map. The crystal structure and phase composition in the AlTi3 alloys were studied by electron microprobe analysis, X-ray diffraction and TEM. The solubility limit of the rare-earth elements were determined and correlated with the atomic size factor. The results obtained so far indicate that rare-earth additions are unable to change the crystal structure of AlTi3 from DO19 to Ll2. The inability to stabilize the Ll2 structure demonstrates the need to characterize the structure map domains with a further period-dependent parameter.


1979 ◽  
Vol 34 (8) ◽  
pp. 1057-1058 ◽  
Author(s):  
Axel Czybulka ◽  
Günter Steinberg ◽  
Hans-Uwe Schuster

In the systems Li-M-X = (M = Y, Gd; X = Si, Ge) the compounds LiYSi, LiYGe and LiGdGe were prepared. Their crystal structures were determined by X-ray investigations. They crystallize hexagonally (space group P 6̄2m), and a C22-(Fe2P-type) lattice was found


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
J. Ochoa ◽  
E. Monteblanco ◽  
L. Cerpa ◽  
A. Gutarra-Espinoza ◽  
L. Avilés-Félix

AbstractA recently discovered the rare-earth-rich site in Capacsaya, located at 123 km northwest of Cusco, at the south of Peru, contains significant quantities of light and heavy rare-earth elements such as neodymium, lanthanum, cerium, europium, and yttrium. This work reports the identification of rare-earth elements and their associated minerals using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses. Five (5) samples extracted from different locations at the Capacsaya site were characterized and identified K-feldspar as the mineral associated with the rare-earth elements in a representative sample with a high concentration of lanthanum and cerium. The results showed rare-earth elements contained within the mineral phase monazite, being cerium the dominant element in the phase (La, Ce, Nd)PO$$_4$$ 4 . Finally, through the electrostatic separation process we demonstrate that it was possible to achieve an efficient separation of the K-feldspar phase in the particle size range 75–150 $$\upmu$$ μ m.


2014 ◽  
Vol 12 (2) ◽  
pp. 220-226 ◽  
Author(s):  
Nuša Hojnik ◽  
Matjaž Kristl ◽  
Amalija Golobič ◽  
Zvonko Jagličić ◽  
Miha Drofenik

AbstractThis article reports the synthesis of novel, rare-earth coordination complexes with nicotinic acid. Three compounds with the general formula Ln2[(C5H4NCOO)6(H2O)4] (Ln = Yb, 1; Ln = Gd, 2; Ln = Nd, 3) were prepared from relatively cheap and readily available reactants. Their compositions and structure were characterized by IR spectroscopy and single-crystal X-ray diffraction. The magnetic and thermogravimetric properties were also studied. The complexes consist of centrosymetric, dimeric molecules having all six nicotinato ligands coordinated with the central atom in the bidentate mode. The coordination environment of the Ln3+ for all three compounds is 8. Here we describe the crystal structure of Yb and Gd complexes with nicotinic acid.


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 211 ◽  
Author(s):  
Daniel Brunt ◽  
Monica Ciomaga Hatnean ◽  
Oleg A. Petrenko ◽  
Martin R. Lees ◽  
Geetha Balakrishnan

The rare-earth tetraborides are exceptional in that the rare-earth ions are topologically equivalent to the frustrated Shastry-Sutherland lattice. In this paper, we report the growth of large single crystals of RB 4 (where R = Nd, Gd → Tm, and Y) by the floating-zone method, using a high-power xenon arc-lamp furnace. The crystal boules have been characterized and tested for their quality using X-ray diffraction techniques and temperature- and field-dependent magnetization and AC resistivity measurements.


2012 ◽  
Vol 554-556 ◽  
pp. 691-694
Author(s):  
Hai Tao Xia ◽  
Yu Fen Liu ◽  
De Fu Rong

One new rare-earth ternary complex with 1-naphthylacetic acid and 1,10-phenanthroline, [Eu0.5Gd0.5(C12H9O2)2(C12H8N2)2(H2O)2]•(C12H9O2)•H2O were synthesized. The structures were established by single crystal X-ray diffraction. The europium (gadolinium) ion is eight-coordinate with four oxygen and four nitrogen atoms forming a coordination polyhedron best describable as a distorted dodecahedral. The luminescence spectra of the complex in a solution of DMF were studied. The complex display characteristic Eu(III)-originated red emission as a sharp band at 617 nm. It is concluded that the metal-centered red emission is promoted by the ligand-assisted energy transfer.


Sign in / Sign up

Export Citation Format

Share Document