sharp band
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Srimita Coomar ◽  
Santanu Mondal ◽  
Rajarshi Sanyal

Abstract This article presents a novel miniaturized (0.105λ0 × 0.105λ0) flexible complementary frequency selective surfaces (CFSS) structure with sharp band edge selectivity and very high angular stability. To explore two diverse applications as a passband and stopband filter, a novel complementary convoluted square loop (CCSL) type structure has been designed and investigated on ultrathin dielectric material of thickness 0.0023λ0. The second-order wide controllable passband with fractional bandwidth of 19.23% (−3 dB) and remarkably wide stopband of 64.7% (−10 dB) and 54.8% (−20 dB) respectively have been achieved by using a cascaded resonating structure which is composed of asymmetrical meandered CCSL array, arranged on two ultrathin dielectric layers with air foam separation. This particular format would lead to sharp band edge selectivity with steep roll-off (72.43 dB/GHz) and an excellent passband selectivity factor (0.731). An equivalent lumped LC circuit in conjunction with the transmission line model has also been adopted to comprehend the physical mechanism of the proposed single layer and double layer structures. Further, better passband and stopband angular stability at an oblique incident angle of 45° and the bending characteristics have also been investigated thoroughly for the proposed flexible CFSS to check their employability in different conformal structures with WiMAX passband and WLAN stopband application.


2021 ◽  
Vol 21 (5) ◽  
pp. 425-429
Author(s):  
Youngje Sung

In this study, two U-slots of different sizes are used to combine the filtering function with a patch antenna. The U-shaped slots are etched into the patch, and currents in the opposite direction exist around these slots. Therefore, the currents cancel each other out, and a radiation null is formed. As a result, two radiation nulls are implemented on the left and right sides of the passband. To demonstrate the novelty of the proposed concept, a filtering patch antenna with a center frequency of 3.21 GHz and a 10 dB impedance bandwidth of 19.9% is designed and fabricated. High suppression levels of 25.33 and 19.32 dB in the lower and higher stopbands, respectively, are achieved. Therefore, a sharp band skirt and good selectivity are exhibited in the boresight gain response. The two radiation nulls are located at 2.4 and 3.7 GHz and can be independently adjusted.


2021 ◽  
Vol 6 (2) ◽  
pp. 52-57
Author(s):  
Fatimah Juma'a ◽  
Falih Alnahwi

In order to provide an efficient, low cost, and small size radiating structure that passes a certain frequency band with negligible amount of interference, the combination of filters and antennas is proposed to form a single element called filtenna. This paper presents a filtenna element with compact size that can radiates in the 5G mid-band frequency range (3.6-3.8 GHz) and perfectly rejects all the frequencies outside this range. The filtenna is composed of a printed circuit antenna that is terminated with a crescent shaped stub that is coupled electromagnetically with a miniaturized sharp band-pass filter. The simulation results show a filtenna reflection coefficient with a reduced value within the intended 5G band and with high values along the other unwanted frequencies. Moreover, the structure has an omnidirectional pattern with reasonable gain value within the band of interest, and this makes the antenna very suitable for portable 5G devices.


2018 ◽  
Vol 7 (3) ◽  
pp. 99-103 ◽  
Author(s):  
M. F. Habash ◽  
A. S. Tantawy ◽  
H. A. Atallah ◽  
A. B. Abdel-Rahman

In this paper, a compact triple band-notched Ultra Wideband (UWB) antenna with sharp band-elimination features and controlled notched bandwidths is proposed and discussed. The design is made up of a rectangular-shaped   patch UWB planar monopole antenna with double collections of band-notched configurations. The band-notched configurations are involved to produce the desired lower and upper stop bands with good frequency selectivity and suitable stop bandwidths. The first notch is realized by using a C-shaped slot etched in the radiating patch in order to eliminate the interference at the WiMAX (3.4 - 3.8 GHz) applications. The second and the third notches are realized together by using a pair of U-shaped resonators that are located beside the feed line in both sides to eliminate the interference with the lower WLAN (5.15–5.35 GHz) and the higher WLAN (5.725–5.825GHz) bands.  Additionally, the bandwidths of the lower and upper stop bands can be control separately by changing the parameters of the band-notched configurations. Furthermore, the suggested triple notched bands UWB antenna is optimized, fabricated, and measured for verification purposes. The measured results are close to the simulated ones.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alessia Daveri ◽  
Marco Malagodi ◽  
Manuela Vagnini

Two real case studies, an oil painting on woven paper and a cycle of mural paintings, have been presented to validate the use of infrared reflection spectroscopy as suitable technique for the identification of bone black pigment. By the use of the sharp weak band at 2013 cm−1, it has been possible to distinguish animal carbon-based blacks by a noninvasive method. Finally, an attempt for an eventual assignment for the widely used sharp band at 2013 cm−1 is discussed.


2018 ◽  
Vol 34 ◽  
pp. 02004
Author(s):  
Siew Yoong Leong ◽  
Soo Shin Chong ◽  
Kah Seng Chin

This study investigates the development of biochar catalyst from bamboo applied for biodiesel synthesis. A non-conventional biodiesel feedstock was used in the in-situ transesterification reaction. This non-conventional feedstock is obtained from an insect’s fly, the Hermetia illucens fly. Biochar derived from bamboo has been investigated as a promising catalyst for biodiesel synthesis. The biochar acid catalysts were prepared by sulphonation via impregnation with concentrated sulphuric acid. The prepared catalysts were investigated for their performance to catalyse in-situ transesterification via ultra-sonication of Hermetia illucens bio-oil. The effects of carbonisation time (1 hour and 2 hour) and temperature (400°C, 500°C and 600°C) as well as catalyst loading (5-20 wt% on oil basis) on the transesterification yield were studied. Result showed that the highest yield of FAME obtained was 95.6% with catalyst loading of 15 wt% carbonized at 500°C for 2 hours. Sharp band of methyl ester functional groups were observed in the FTIR spectra at 1735-1750cm-1. The composition of this methyl ester was further deduced using gas chromatography and the fatty acid was predominantly lauric acid.


2017 ◽  
Vol 81 (1) ◽  
pp. 183-197 ◽  
Author(s):  
Monika M. M. Haring ◽  
Andrew M. McDonald

AbstractNolzeite, Na(Mn,□)2[Si3(B,Si)O9(OH)2]·2H2O, is a new mineral found in altered sodalite syenite at the Poudrette quarry, La Vallée-du-Richelieu, Montérégie (formerly Rouville County), Québec, Canada. Crystals are colourless to pale green and are acicular with average dimensions of 5 μm × 8 μm × 55 μm. They occur as radiating to loose, randomly oriented groupings within vugs associated with aegirine, nepheline, sodalite, eudialyte-group minerals, analcime, natron, pyrrhotite, catapleiite, steedeite and the unidentified mineral, UK80. Nolzeite is non-pleochroic, biaxial, with nmin = 1.616(2) and nmax = 1.636(2) and has a positive elongation. The average of six chemical analyses gave the empirical formula: Na1.04(Mn1.69□0.24Fe0.05Ca0.02)∑=2.00(Si2.96S0.04)∑=3.00(B0.70Si0.30)∑=1.00O9(OH)2·2H2O based on 13 anions. The Raman spectrum shows six distinct bands occurring at ∼3600–3300 cm–1 and 1600–1500 cm–1 (O–H and H–O–H bending), 1300–1200 cm–1 (B–OH bending), 1030–800 cm–1 (Si–O–Si stretching) as well as 700–500 cm–1 and 400–50 cm–1 (Mn–O and Na–O bonding, respectively). The FTIR spectrum for nolzeite shows bands at ∼2800 –3600 cm–1(O–H) stretching, a moderately sharp band at 1631 cm –1(H–O–H) bending, strong, sharp bands at ∼650 –700 cm–1, ∼800 –840 cm–1, and ∼900–1100 cm–1(Si–O and B –O) bonds. Nolzeite is triclinic, crystallizing in space group P with a = 6.894(1), b = 7.632(2), c = 11.017(2) Å, α= 108.39(3), β= 99.03, γ = 103.05(3)°, V = 519.27 Å3, and Z = 2. The crystal structure was refined to R = 12.37% and wR2 = 31.07% for 1361 reflections (Fo > 4σFo). It is based on chains of tetrahedra with a periodicity of three (i.e. a dreier chain) consisting of three symmetrically independent SiO4 tetrahedra forming C-shaped clusters closed by BO2(OH)2 tetrahedra, producing single loop-branched dreier borosilicate chains. The chains are linked through shared corners to double chains of edge-sharing MnO5(OH) octahedra. Nolzeite is a chain silicate closely related to steedeite and members of the sérandite–pectolite series. Paragenetically, nolzeite is late-stage, probably forming under alkaline conditions and over a narrow range of low pressures and temperatures.


2017 ◽  
Vol 79 ◽  
pp. 185-198 ◽  
Author(s):  
Ammar Alhegazi ◽  
Zahriladha Zakaria ◽  
Noor Azwan Shairi ◽  
Imran Mohd Ibrahim ◽  
Sharif Ahmed

Sign in / Sign up

Export Citation Format

Share Document