An Overview of a Continuum Mechanic Approach to a Thermodynamic Model of Failure

1998 ◽  
Author(s):  
A. N. Palazotto ◽  
S. K. Naboulsi
2002 ◽  
Author(s):  
Rudolf Zitny ◽  
Jiří Sestak ◽  
Alexander Tsiapouris ◽  
Lothar Linke

2021 ◽  
Vol 155 (2) ◽  
pp. 024506
Author(s):  
Wilfried B. Holzapfel ◽  
Stefan Klotz

Author(s):  
Alexander Bucknell ◽  
Matthew McGilvray ◽  
David R.H. Gillespie ◽  
Geoffrey Jones ◽  
Benjamin Collier

1999 ◽  
Vol 23 (7) ◽  
pp. 408-409
Author(s):  
Loutfy H. Madkour ◽  
R. M. Issa ◽  
I. M. El-Ghrabawy

This investigation is designed to apply an advanced kinetic–thermodynamic model on the data obtained from acidic and alkaline corrosion of aluminium using bis- and mono-azo dyes as corrosion inhibitors.


1999 ◽  
Vol 23 (8) ◽  
pp. 518-519
Author(s):  
Francisco Jose Alguacil ◽  
Jaime Simpson ◽  
Patricio Navarro

A previously determined thermodynamic model for extraction equilibrium is used as a basis to predict experimentally measured distribution coefficients for the CuSO4–H2SO4–LIX 984–Escaid 103 solvent extraction system at 25 °C and aqueous copper concentrations in the range 0.01–2.0 gL−1, the copper loading isotherm is also obtained.


Author(s):  
Karl Yngve Lervåg ◽  
Hans Langva Skarsvåg ◽  
Eskil Aursand ◽  
Jabir Ali Ouassou ◽  
Morten Hammer ◽  
...  

1996 ◽  
Vol 457 ◽  
Author(s):  
R. Banerjee ◽  
X. D. Zhang ◽  
S. A. Dregia ◽  
H. L. Fraser

ABSTRACTNanocomposite Ti/Al multilayered thin films have been deposited by magnetron sputtering. These multilayers exhibit interesting structural transitions on reducing the layer thickness of both Ti and Al. Ti transforms from its bulk stable hep structure to fee and Al transforms from fee to hep. The effect of ratio of Ti layer thickness to Al layer thickness on the structural transitions has been investigated for a constant bilayer periodicity of 10 nm by considering three different multilayers: 7.5 nm Ti / 2.5 nm Al, 5 nm Ti / 5 nm Al and 2.5 nm Ti / 7.5 nm Al. The experimental results have been qualitatively explained on the basis of a thermodynamic model. Preliminary experimental results of interfacial reactions in Ti/Al bilayers resulting in the formation of Ti-aluminides are also presented in the paper.


1978 ◽  
Vol 235 (6) ◽  
pp. F638-F648 ◽  
Author(s):  
S. R. Thomas ◽  
D. C. Mikulecky

This network thermodynamic model of kidney proximal tubule epithelium treats coupled salt and water flow across each component membrane of the epithelium. We investigate the effects of various relative internal parameter values on the concentration of transepithelial flow, the concentrations in the cell and interspace, and the distribution of flows between cellular and paracellular routes. Best fit is obtaine if the apical and basolateral membrane reflection coefficients (or) are equal. The measured transepithelial filtration coefficient, Lp, is a function not only of the component Lps but also of the internal concentrations, or's, and permeabilities. For the given system topology (i.e., connectedness), parameters of component membranes must be within a narrow range to be consistent with experimental results. The dependence of the concentration of transported fluid on the balance between the solute pump rate and the transepithelial volume flow driving force is shown. This has implications for the effects of peritubular or lumen oncotic pressure on salt and water flow. With Appendix B of this paper and a user's guide for a circuit-simulation package (e.g., SPICE or PCAP) the reader can perform similar network analyses of transport models himself.


Sign in / Sign up

Export Citation Format

Share Document