Synthesis of Nanocomposite thin film Ti/Al Multilayers and Ti-Aluminides

1996 ◽  
Vol 457 ◽  
Author(s):  
R. Banerjee ◽  
X. D. Zhang ◽  
S. A. Dregia ◽  
H. L. Fraser

ABSTRACTNanocomposite Ti/Al multilayered thin films have been deposited by magnetron sputtering. These multilayers exhibit interesting structural transitions on reducing the layer thickness of both Ti and Al. Ti transforms from its bulk stable hep structure to fee and Al transforms from fee to hep. The effect of ratio of Ti layer thickness to Al layer thickness on the structural transitions has been investigated for a constant bilayer periodicity of 10 nm by considering three different multilayers: 7.5 nm Ti / 2.5 nm Al, 5 nm Ti / 5 nm Al and 2.5 nm Ti / 7.5 nm Al. The experimental results have been qualitatively explained on the basis of a thermodynamic model. Preliminary experimental results of interfacial reactions in Ti/Al bilayers resulting in the formation of Ti-aluminides are also presented in the paper.

2007 ◽  
Vol 124-126 ◽  
pp. 403-406 ◽  
Author(s):  
Yong Lak Choi ◽  
Seon Hwa Kim

ITO monolayer and ITO/Ag/ITO multilayer thin films are prepared by D.C. magnetron sputtering method, optical and electrical properties were estimated with different crystalline properties and microstructures. The coated Ag layer thickness was around 50 , and the surface of ITO/Ag/ITO thin film had the very fine island morphology. The growth of columnar phase was inhibited, and most of phases were amorphous. The carrier concentration increased above 10 times because of the effect of Ag layer, and the observed sheet resistance gave much lower value of below 4 / compared to that of coated crystalline ITO thin film that was 10 / , and the transmittance was 80%.


1993 ◽  
Vol 311 ◽  
Author(s):  
W.W. Hsieh ◽  
J.J. Lin ◽  
M.M. Wang ◽  
L.L. Chen

ABSTRACTSimultaneous occurrence of multiphases was observed in the interfacial reactions of ultrahigh vacuum deposited Ti, Hf and Cr thin films on (111)Si by high resolution transmission electron microscopy in conjunction with fast Fourier transform diffraction analysis and image simulation. For the three systems, an amorphous interlayer as well as a number of crystalline phase were found to form simultaneously in the early stages of interfacial reactions. The formation of multiphases appeared to be quite general in the initial stages of interfacial reactions of UHV deposited refractory thin films. The results called for a reexamination of generally accepted “difference” in reaction sequence between bulk and thin film couples.


2014 ◽  
Vol 979 ◽  
pp. 240-243
Author(s):  
Narathon Khemasiri ◽  
Chanunthorn Chananonnawathorn ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Pongpan Chindaudom ◽  
...  

Tantalum oxide (Ta2O5) thin films were deposited as the protective layers for the metal surface finishing by the DC reactive magnetron sputtering system. The effect of the Ta2O5 film thickness, ranging from 25 nm to 200 nm, on the physical properties and the anti-corrosive performance were investigated. The grazing-incidence X-ray diffraction (GIXRD) and the atomic force microscopy (AFM) were used to examine the crystal structures and the surface topologies of the prepared films, respectively. The XRD results showed that the Ta2O5 thin films were all amorphous. The AFM micrographs demonstrated the film morphology with quite smooth surface features. The surface roughness tended to be rough when the film thickness was increased. To examine the protective performance of the films, the poteniostat and galvanometer was utilized to examine the electrochemical activities with the 1M NaCl as the corrosive electrolyte. The results from the I-V polarization curves (Tafel slope) indicated that, with the Ta2O5 thin film, the current density was significantly reduced by 3 orders of magnitude when compared with the blank sample. Such results were observed because of fully encapsulated surface of the samples were covered with the sputtered Ta2O5 thin films. The study also showed that the Ta2O5 thin film deposited at 50 nm yielded the most extreme protective performance. The Ta2O5 thin films therefore could be optimized for the smallest film thickness for highly potential role in the protective performance of the metal surface finishing products.


1998 ◽  
Vol 13 (5) ◽  
pp. 1266-1270 ◽  
Author(s):  
Ai-Li Ding ◽  
Wei-Gen Luo ◽  
P. S. Qiu ◽  
J. W. Feng ◽  
R. T. Zhang

PLT(28) thin films deposited on glass substrates were studied by two sputtering processes. One is an in situ magnetron sputtering and the other is a low-temperature magnetron sputtering. The sintered PLT ceramic powders are used as a sputtering target for both processes. The influences of sputtering and annealing conditions on structure and crystallinity of the films were investigated. The electro-optic (E-O) properties of PLT(28) thin films prepared by the two processes were determined by a technique according to Faraday effect. The researches showed the E-O properties were strongly affected by the sputtering process. The film with larger grains exhibits stronger E-O effect. The quadratic E-O coefficient of PLT(28) thin film varies in the range of 0.1 × 10−16 to 1.0 × 10−16 (m/v)2.


2013 ◽  
Vol 27 (22) ◽  
pp. 1350156 ◽  
Author(s):  
R. J. ZHU ◽  
Y. REN ◽  
L. Q. GENG ◽  
T. CHEN ◽  
L. X. LI ◽  
...  

Amorphous V 2 O 5, LiPON and Li 2 Mn 2 O 4 thin films were fabricated by RF magnetron sputtering methods and the morphology of thin films were characterized by scanning electron microscopy. Then with these three materials deposited as the anode, solid electrolyte, cathode, and vanadium as current collector, a rocking-chair type of all-solid-state thin-film-type Lithium-ion rechargeable battery was prepared by using the same sputtering parameters on stainless steel substrates. Electrochemical studies show that the thin film battery has a good charge–discharge characteristic in the voltage range of 0.3–3.5 V, and after 30 cycles the cell performance turned to become stabilized with the charge capacity of 9 μAh/cm2, and capacity loss of single-cycle of about 0.2%. At the same time, due to electronic conductivity of the electrolyte film, self-discharge may exist, resulting in approximately 96.6% Coulombic efficiency.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39859-39868 ◽  
Author(s):  
Shaofeng Shao ◽  
Yunyun Chen ◽  
Shenbei Huang ◽  
Fan Jiang ◽  
Yunfei Wang ◽  
...  

Pt/GQDs/TiO2 nanocomposite thin film-based gas sensors show tunable VOC sensing behaviour at room temperature under visible-light activation.


2018 ◽  
Vol 53 ◽  
pp. 01008
Author(s):  
Feihu Tan ◽  
XiaoPing Liang ◽  
Feng Wei ◽  
Jun Du

The amorphous LiPON thin film was obtained by using the crystalline Li3PO4 target and the RF magnetron sputtering method at a N2 working pressure of 1 Pa. and then the morphology and composition of LiPON thin films are analysed by SEM and EDS. SEM shows that the film was compact and smooth, while EDS shows that the content of N in LiPON thin film was about 17.47%. The electrochemical properties of Pt/LiPON/Pt were analysed by EIS, and the ionic conductivity of LiPON thin films was 3.8×10-7 S/cm. By using the hard mask in the magnetron sputtering process, the all-solid-state thin film battery with Si/Ti/Pt/LiCoO2/LiPON/Li4Ti5O12/Pt structure was prepared, and its electrical properties were studied. As for this thin film battery, the open circuit voltage was 1.9 V and the first discharge specific capacity was 34.7 μAh/cm2·μm at a current density of 5 μA/cm-2, indicating that is promising in all-solidstate thin film batteries.


2011 ◽  
Vol 1288 ◽  
Author(s):  
Rashmi Menon ◽  
K. Sreenivas ◽  
Vinay Gupta

ABSTRACTZinc Oxide (ZnO), II-VI compound semiconductor, is a promising material for ultraviolet (UV) photon sensor applications due to its attractive properties such as good photoconductivity, ease processing at low temperatures and excellent radiation hardness. The rf magnetron sputtering is a suitable deposition technique due to better control over stoichiometry and deposition of uniform film. Studies have shown that the presence of surface defects in ZnO and subsequently their passivation are crucial for enhanced photo-response characteristics, and to obtain the fast response speed. Worldwide efforts are continuing to develop good quality ZnO thin films with novel design structures for realization of an efficient UV photon sensor. In the present work, UV photon sensor is fabricated using a ZnO thin films deposited by rf magnetron sputtering on the corning glass substrate. Photo-response, (Ion/Ioff) of as-grown ZnO film of thickness 100 nm is found to be 3×103 with response time of 90 ms for UV intensity of 140 μW/cm2 (λ = 365 nm). With irradiation on ZnO thin film by pulsed Nd:YAG laser (forth harmonics 266 nm), the sensitivity of the UV sensor is found to enhance. The photo-response increases after laser irradiation to 4x104 with a fast response speed of 35 ms and attributed to the change in surface states and the native defects in the ZnO thin film. Further, enhancement in the ultraviolet (UV) photo-response (8×104) of detector was observed after integrating the nano-scale islands of Sn metal on the surface of laser irradiated ZnO thin film.


2013 ◽  
Vol 802 ◽  
pp. 47-52
Author(s):  
Chuleerat Ibuki ◽  
Rachasak Sakdanuphab

In this work the effects of amorphous (glass) and crystalline (Si) substrates on the structural, morphological and adhesion properties of CoFeB thin film deposited by DC Magnetron sputtering were investigated. It was found that the structure of a substrate affects to crystal formation, surface morphology and adhesion of CoFeB thin films. The X-Ray diffraction patterns reveal that as-deposited CoFeB thin film at low sputtering power was amorphous and would become crystal when the power increased. The increase in crystalline structure of CoFeB thin film is attributed to the crystalline substrate and the increase of kinetic energy of sputtering atoms. Atomic Force Microscopy images of CoFeB thin film clearly show that the roughness, grain size, and uniformity correlate to the sputtering power and the structure of substrate. The CoFeB thin film on glass substrate shows a smooth surface and a small grain size whereas the CoFeB thin film on Si substrate shows a rough surface and a slightly increases of grain size. Sticky Tape Test on CoFeB thin film deposited on glass substrate indicates the adhesion failure with a high sputtering power. The results suggest that the crystalline structure of substrate affects to the atomic bonding and the sputtering power affects to intrinsic stress of CoFeB thin film.


Sign in / Sign up

Export Citation Format

Share Document