S14 as a Therapeutic Target in Breast Cancer

Author(s):  
William B. Kinlaw
2020 ◽  
Vol 26 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Chong Guo ◽  
Gang Zhou ◽  
...  

Background: CASC15, one of long non-coding RNA, is involved in the regulation of many tumor biological processes, and is expected to become a new biological therapeutic target. This paper aims to elucidate the pathophysiological function of CASC15 in various tumors. Methods: The relationship between CASC15 and tumors was analyzed by searching references, and summarizes the specific pathophysiological mechanism of CASC15. Results: LncRNA CASC15 is closely related to tumor development, and has been shown to be abnormally high expressed in all kinds of tumors, including breast cancer, cervical cancer, lung cancer, hepatocellular carcinoma, gastric cancer, bladder cancer, colon cancer, colorectal cancer, cardiac hypertrophy, intrahepatic cholangiocarcinoma, leukemia, melanoma, tongue squamous cell carcinoma, nasopharyngeal carcinoma. However, CASC15 has been found to be downexpressed abnormally in ovarian cancer, glioma and neuroblastoma. Besides, it is identified that CASC15 can affect the proliferation, invasion and apoptosis of tumors. Conclusion: LncRNA CASC15 has the potential to become a new therapeutic target or marker for a variety of tumors.


2021 ◽  
Vol 1 (1) ◽  
pp. 55-68
Author(s):  
Urszula Smietanka ◽  
Małgorzata Szostakowska-Rodzos ◽  
Sylwia Tabor ◽  
Anna Fabisiewicz ◽  
Ewa A. Grzybowska

Circulating tumor cells (CTCs) are gaining momentum as a diagnostic tool and therapeutic target. CTC clusters are more metastatic, but harder to study and characterize, because they are rare and the methods of isolation are mostly focused on single CTCs. This review highlights the recent advances to our understanding of tumor cell clusters with the emphasis on their composition, origin, biology, methods of detection, and impact on metastasis and survival. New approaches to therapy, based on cluster characteristics are also described.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
S Keelan ◽  
S Charmsaz ◽  
S Purcell ◽  
D Varešlija ◽  
S Cocchiglia ◽  
...  

Abstract Introduction Brain metastasis (BrM) occurs in 10-30% of patients with advanced breast cancer (BC). BrM is increasing in incidence and confers a poor prognosis. We aimed to investigate the contribution of global epi-transcriptomic alterations in N6-methyladenosine (m6A) RNA-methylation as a therapeutic target in brain metastatic breast cancer. Method In preliminary studies we have demonstrated m6A demethylase – FTO as the main contributor to the progression of ER+ breast cancer. Furthermore an association between FTO and reduced disease-free-survival (n=870, p=0.018) was observed. Here we conducted an epigenetic inhibitor screen using two therapeutic agents, ethyl-ester-meclofenamic acid (MA2) and FB23-2 on matched 2D cell line, 3D organoid cultures and patient-derived xenografts (PDX) explant models of brain metastasis. Result Upon integration of mapped global RNA methylation landscape with matched proteomic analysis, we observed genome-wide RNA hypo-methylation of key pluripotency genes, including SOX2 and KLF4, as key players underlying tumour progression to the brain.  Genetic and pharmacological inhibition of FTO in novel ex vivo models of BrM significantly reduced protein expression levels of KLF4 and SOX2. Moreover, pharmacological inhibition of FTO with MA2 and FB23-2, inhibited cell proliferation in endocrine-resistant BC and patient BrM cells. We translate our findings to the clinic by demonstrating the efficacy of anti-FTO therapies in several unique PDX and 3D organoid BrM models. Conclusion Our results reveal epi-transcriptional remodelling events as a key mechanism in BrM. This study establishes an early role for targeting RNA methylation in the management of disease progression and presents FTO as a potential therapeutic target in BrM. Take-home message This study establishes an early role for targeting RNA methylation in the management of disease progression and presents FTO as a potential therapeutic target in brain metastatic breast cancer.


2007 ◽  
Vol 67 (12) ◽  
pp. 5821-5830 ◽  
Author(s):  
Yingshe Zhao ◽  
Richard Bachelier ◽  
Isabelle Treilleux ◽  
Philippe Pujuguet ◽  
Olivier Peyruchaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document