Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade

1996 ◽  
Vol 118 (2) ◽  
pp. 327-333 ◽  
Author(s):  
H. Wanda Jiang ◽  
J.-C. Han

Experiments were performed to study the effect of film hole row location on local film effectiveness distribution of a turbine blade model with air or CO2 film injection. Tests were performed on a five-blade linear cascade at the chord Reynolds number of 3.0 × 105 at the cascade inlet. A combination of turbulence grid and unsteady wake was used to create a higher free-stream turbulence level. The test blade had three rows of film holes in the leading edge region and two rows each on the pressure and suction surfaces. Film hole row locations were set by leaving the film holes at that row location open and covering the remaining rows. In addition, the additive nature of film cooling on the turbine blade model was examined by comparing the measured film effectiveness with the predicted effectiveness from the superposition method. Results show that injection from a different film hole row location provides a different effectiveness distribution on pressure and suction surfaces depending on local mainstream velocity and blade curvature. In most cases, the superposition method holds downstream of the last film hole row.

1997 ◽  
Vol 119 (3) ◽  
pp. 594-600 ◽  
Author(s):  
S. V. Ekkad ◽  
A. B. Mehendale ◽  
J. C. Han ◽  
C. P. Lee

Experiments were performed to study the combined effect of grid turbulence and unsteady wake on film effectiveness and heat transfer coefficient of a turbine blade model. Tests were done on a five-blade linear cascade at the chord Reynolds number of 3.0 × 105 at cascade inlet. Several combinations of turbulence grids, their locations, and unsteady wake strengths were used to generate various upstream turbulence conditions. The test blade had three rows of film holes in the leading edge region and two rows each on the pressure and suction surfaces. Air and CO2 were used as injectants. Results show that Nusselt numbers for a blade with film injection are much higher than that without film holes. An increase in mainstream turbulence level causes an increase in Nusselt numbers and a decrease in film effectiveness over most of the blade surface, for both density injectants, and at all blowing ratios. A free-stream turbulence superimposed on an unsteady wake significantly affects Nusselt numbers and film effectiveness compared with only an unsteady wake condition.


2014 ◽  
Vol 554 ◽  
pp. 317-321
Author(s):  
Mohamad Rasidi Bin Pairan ◽  
Norzelawati Binti Asmuin ◽  
Hamidon bin Salleh

Film cooling is one of the cooling techniques applied to the turbine blade. Gas turbine used film cooling technique to protect turbine blade from directly expose to the hot gas to avoid the blade from defect. The focus of this investigation is to investigate the effect of embedded three difference depth of trench at coolant holes geometry. Comparisons are made at four difference blowing ratios which are 1.0, 1.25 and 1.5. Three configuration leading edge with depth Case A (0.0125D), Case B (0.0350D) and Case C (0.713D) were compared to leading edge without trench. Result shows that as blowing ratio increased from 1.0 to 1.25, the film cooling effectiveness is increase for leading edge without trench and also for all cases. However when the blowing ratio is increase to 1.5, film cooling effectiveness is decrease for all cases. Overall the Case B with blowing ratio 1.25 has the best film cooling effectiveness with significant improvement compared to leading edge without trench and with trench Case A and Case C.


Author(s):  
Michael W. Cruse ◽  
Ushio M. Yuki ◽  
David G. Bogard

Film cooling adiabatic effectiveness of a simulated turbine airfoil leading edge was studied experimentally. The leading edge had two rows of holes, one at nominally the stagnation line position and the second a few hole diameters downstream. Hole positions at the leading edge, and inclination of the holes with respect to the surface, were different than typically used in previous studies, but were representative of current design practice. Various leading edge film cooling parameters were investigated including stagnation line position, free-stream turbulence level, leading edge geometry, and coolant to mainstream density ratio. Large density ratios were obtained by cooling the injected coolant to very low temperatures. Large scale, high level free-stream turbulence (Tu = 20%) was generated using a specially developed cross-jet turbulence generator. An infrared camera system was used to obtain well resolved surface temperature distributions around the coolant holes and across the leading edge. Results from the experiments showed considerably higher optimum blowing ratios than found in previous studies. The stagnation line position was found to be important in influencing the direction of coolant flow from the first row of holes. High free-stream turbulence levels were found to greatly decrease adiabatic effectiveness at low blowing ratios (M = 1.0), but had little effect at high blowing ratios (M = 2.0 and 2.5). Adiabatic effectiveness distributions were very similar for circular and elliptical leading edges. Experiments conducted at coolant to mainstream density ratios of 1.1 and 1.8 showed distinctly different flow characteristics in the stagnation line region for the different density ratio coolants.


1985 ◽  
Vol 107 (1) ◽  
pp. 127-134 ◽  
Author(s):  
H. P. Hodson

The state of the boundary layers near the leading edge of a high-speed turbine blade has been investigated, in cascade, using an array of surface-mounted, constant-temperature, hot-film anemometers. The measurements are interpreted with the aid of inviscid and viscous prediction codes. The effects of Reynolds number, compressibility, incidence, and free-stream turbulence are described. In all cases, the initial development of the boundary layers was extremely complex and, even at design conditions, separation and reattachment, transition and relaminarization were found to occur.


1993 ◽  
Author(s):  
David Greenblatt

A computational procedure has been developed which accounts for the combined time-mean effect of wake-passing and free-stream turbulence on laminar turbine blade boundary layers. The procedure has the advantage of being computationally efficient as well as providing a realistic model of the unsteady nature of the flow. The procedure yielded the parameter TuReD/σD/2 for characterizing the time-mean flow in the leading edge region and the parameter Γ≡2T~u2σx/γ for describing the flow downstream of the stagnation point. A provisional comparison with stagnation flow experimental data showed that the procedure may be more general than initially expected.


Sign in / Sign up

Export Citation Format

Share Document