Diapycnal Mixing in a Coastal Regime

2006 ◽  
Author(s):  
Michael Gregg ◽  
Jack Miller
Keyword(s):  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhao Jing ◽  
Lixin Wu ◽  
Xiaohui Ma ◽  
Ping Chang
Keyword(s):  

2016 ◽  
Vol 46 (12) ◽  
pp. 3751-3775 ◽  
Author(s):  
Olivier Arzel ◽  
Alain Colin de Verdière

AbstractThe turbulent diapycnal mixing in the ocean is currently obtained from microstructure and finestructure measurements, dye experiments, and inverse models. This study presents a new method that infers the diapycnal mixing from low-resolution numerical calculations of the World Ocean whose temperatures and salinities are restored to the climatology. At the difference of robust general circulation ocean models, diapycnal diffusion is not prescribed but inferred. At steady state the buoyancy equation shows an equilibrium between the large-scale diapycnal advection and the restoring terms that take the place of the divergence of eddy buoyancy fluxes. The geography of the diapycnal flow reveals a strong regional variability of water mass transformations. Positive values of the diapycnal flow indicate an erosion of a deep-water mass and negative values indicate a creation. When the diapycnal flow is upward, a diffusion law can be fitted in the vertical and the diapycnal eddy diffusivity is obtained throughout the water column. The basin averages of diapycnal diffusivities are small in the first 1500 m [O(10−5) m2 s−1] and increase downward with bottom values of about 2.5 × 10−4 m2 s−1 in all ocean basins, with the exception of the Southern Ocean (50°–30°S), where they reach 12 × 10−4 m2 s−1. This study confirms the small diffusivity in the thermocline and the robustness of the higher canonical Munk’s value in the abyssal ocean. It indicates that the upward dianeutral transport in the Atlantic mostly takes place in the abyss and the upper ocean, supporting the quasi-adiabatic character of the middepth overturning.


2013 ◽  
Vol 43 (7) ◽  
pp. 1485-1511 ◽  
Author(s):  
Ivana Cerovečki ◽  
Lynne D. Talley ◽  
Matthew R. Mazloff ◽  
Guillaume Maze

Abstract Subantarctic Mode Water (SAMW) is examined using the data-assimilating, eddy-permitting Southern Ocean State Estimate, for 2005 and 2006. Surface formation due to air–sea buoyancy flux is estimated using Walin analysis, and diapycnal mixing is diagnosed as the difference between surface formation and transport across 30°S, accounting for volume change with time. Water in the density range 26.5 < σθ < 27.1 kg m−3 that includes SAMW is exported northward in all three ocean sectors, with a net transport of (18.2, 17.1) Sv (1 Sv ≡ 106 m3 s−1; for years 2005, 2006); air–sea buoyancy fluxes form (13.2, 6.8) Sv, diapycnal mixing removes (−14.5, −12.6) Sv, and there is a volume loss of (−19.3, −22.9) Sv mostly occurring in the strongest SAMW formation locations. The most vigorous SAMW formation is in the Indian Ocean by air–sea buoyancy flux (9.4, 10.9) Sv, where it is partially destroyed by diapycnal mixing (−6.6, −3.1) Sv. There is strong export to the Pacific, where SAMW is destroyed both by air–sea buoyancy flux (−1.1, −4.6) Sv and diapycnal mixing (−5.6, −8.4) Sv. In the South Atlantic, SAMW is formed by air–sea buoyancy flux (5.0, 0.5) Sv and is destroyed by diapycnal mixing (−2.3, −1.1) Sv. Peaks in air–sea flux formation occur at the Southeast Indian and Southeast Pacific SAMWs (SEISAMWs, SEPSAMWs) densities. Formation over the broad SAMW circumpolar outcrop windows is largely from denser water, driven by differential freshwater gain, augmented or decreased by heating or cooling. In the SEISAMW and SEPSAMW source regions, however, formation is from lighter water, driven by differential heat loss.


2012 ◽  
Vol 9 (10) ◽  
pp. 14291-14325 ◽  
Author(s):  
T. Fischer ◽  
D. Banyte ◽  
P. Brandt ◽  
M. Dengler ◽  
G. Krahmann ◽  
...  

Abstract. The replenishment of consumed oxygen in the open ocean oxygen minimum zone (OMZ) off West Africa in the tropical North Atlantic Ocean is studied, with a focus on oxygen transport across density surfaces (diapycnal flux). The latter is obtained from a large observational set of oxygen profiles and diapycnal mixing data from years 2008 to 2010. Diapycnal mixing is inferred from different sources: a large scale tracer release experiment, microstructure profiles, and shipboard acoustic current measurements plus density profiles. The average diapycnal diffusivity in the study area is 1 × 10−5 m2 s−1. No significant vertical gradient of average diapycnal diffusivities exists in the depth interval from 150 to 500 m. The diapycnal flux is found to contribute substantially to the oxygen supply of the OMZ. Within the OMZ core, 1.5 µmol kg−1 a−1 of oxygen is supplied via diapycnal mixing, contributing about a third of the total demand. The oxygen that is contributed via diapycnal mixing originates from oxygen that has been laterally supplied within the overlying Central Water layer by advective and eddy fluxes. Due to the existence of a separate shallow oxygen minimum at about 100 m depth throughout most of the study area, there is no direct net vertical oxygen flux from the surface layer of the study area into the Central Water layer. Thus all oxygen supply of the OMZ is associated with remote pathways.


2021 ◽  
Author(s):  
Yi Gong ◽  
Haibin Song ◽  
Zhongxiang Zhao ◽  
Yongxian Guan ◽  
Kun Zhang ◽  
...  

Abstract. Shoaling internal solitary waves near the Dongsha Atoll in the South China Sea dissipate their energy and thus enhance diapycnal mixing, which have an important impact on the oceanic environment and primary productivity. The enhanced diapycnal mixing is patchy and instantaneous. Evaluating its spatiotemporal distribution requires comprehensive observation data. Fortunately, seismic oceanography meets the requirements, thanks to its high spatial resolution and large spatial range. In this paper, we studied three internal solitary waves in reversing polarity near the Dongsha Atoll, and calculated the spatial distribution of resultant diapycnal diffusivity. Our results show that the average diffusivities along three survey lines are two orders of magnitude larger than the open-ocean value. The average diffusivity in the internal solitary wave with reversing polarity is three times that of the non-polarity-reversal region. The diapycnal diffusivity is higher at the front of one internal solitary wave, and gradually decreases from shallow to deep water in the vertical direction. Our results also indicates that (1) the enhanced diapycnal diffusivity is related to reflection seismic events; (2) convective instability and shear instability may both contribute to the enhanced diapycnal mixing in the polarity-reversing process; and (3) the difference between our and previous diffusivity profiles is about 2–3 orders of magnitude, but their vertical distribution is almost the same.


Author(s):  
Ying He ◽  
Jianing Wang ◽  
Fan Wang ◽  
Toshiyuki Hibiya

AbstractThe Mindanao Current (MC) bridges the North Pacific low-latitude western boundary current system region and the Indonesian Seas by supplying the North Pacific waters to the Indonesian Throughflow. Although the previous study speculated that the diapycnal mixing along the MC might be strong on the basis of the water mass analysis of the gridded climatologic dataset, the real spatial distribution of diapycnal mixing along the MC has remained to be clarified. We tackle this question here by applying a finescale parameterization to temperature and salinity profiles obtained using two rapid-sampling profiling Argo floats that drifted along the MC. The western boundary (WB) region close to the Mindanao Islands and the Sangihe Strait are the two mixing hotspots along the MC, with energy dissipation rate ε and diapycnal diffusivity Kρ enhanced up to ~ 10–6 W kg−1 and ~ 10–3 m2 s−1, respectively. Except for the above two mixing hotspots, the turbulent mixing along the MC is mostly weak, with ε and Kρ to be 10–11–10–9 W kg−1 and 10–6–10–5 m2 s−1, respectively. Strong mixing in the Sangihe Strait can be basically attributed to the existence of internal tides, whereas strong mixing in the WB region suggests the existence of internal lee waves. We also find that water mass transformation along the MC mainly occurs in the Sangihe Strait where the water masses are subjected to strong turbulent mixing during a long residence time.


1990 ◽  
pp. 269-293 ◽  
Author(s):  
Eric B. Kraus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document