Role of Complement in Red Cell Dysfunction in Trauma

2013 ◽  
Author(s):  
George Tsokos
Keyword(s):  
Red Cell ◽  
Author(s):  
Christopher A. Miller ◽  
Bridget Carragher ◽  
William A. McDade ◽  
Robert Josephs

Highly ordered bundles of deoxyhemoglobin S (HbS) fibers, termed fascicles, are intermediates in the high pH crystallization pathway of HbS. These fibers consist of 7 Wishner-Love double strands in a helical configuration. Since each double strand has a polarity, the odd number of double strands in the fiber imparts a net polarity to the structure. HbS crystals have a unit cell containing two double strands, one of each polarity, resulting in a net polarity of zero. Therefore a rearrangement of the double strands must occur to form a non-polar crystal from the polar fibers. To determine the role of fascicles as an intermediate in the crystallization pathway it is important to understand the relative orientation of fibers within fascicles. Furthermore, an understanding of fascicle structure may have implications for the design of potential sickling inhibitors, since it is bundles of fibers which cause the red cell distortion responsible for the vaso-occlusive complications characteristic of sickle cell anemia.


Author(s):  
Thomas Luft ◽  
Peter Dreger ◽  
Aleksandar Radujkovic

AbstractAllogeneic hematopoietic stem cell transplantation (alloSCT) carries the promise of cure for many malignant and non-malignant diseases of the lympho-hematopoietic system. Although outcome has improved considerably since the pioneering Seattle achievements more than 5 decades ago, non-relapse mortality (NRM) remains a major burden of alloSCT. There is increasing evidence that endothelial dysfunction is involved in many of the life-threatening complications of alloSCT, such as sinusoidal obstruction syndrome/venoocclusive disease, transplant-associated thrombotic microangiopathy, and refractory acute graft-versus host disease. This review delineates the role of the endothelium in severe complications after alloSCT and describes the current status of search for biomarkers predicting endothelial complications, including markers of endothelial vulnerability and markers of endothelial injury. Finally, implications of our current understanding of transplant-associated endothelial pathology for prevention and management of complications after alloSCT are discussed.


2021 ◽  
Vol 22 (11) ◽  
pp. 5843
Author(s):  
Chloé Turpin ◽  
Aurélie Catan ◽  
Olivier Meilhac ◽  
Emmanuel Bourdon ◽  
François Canonne-Hergaux ◽  
...  

The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 703
Author(s):  
Yao Wang ◽  
Hana Alkhalidy ◽  
Dongmin Liu

Type 2 diabetes (T2D) is a fast-increasing health problem globally, and it results from insulin resistance and pancreatic β-cell dysfunction. The gastrointestinal (GI) tract is recognized as one of the major regulatory organs of glucose homeostasis that involves multiple gut hormones and microbiota. Notably, the incretin hormone glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells plays a pivotal role in maintaining glucose homeostasis via eliciting pleiotropic effects, which are largely mediated via its receptor. Thus, targeting the GLP-1 signaling system is a highly attractive therapeutic strategy to treatment T2D. Polyphenols, the secondary metabolites from plants, have drawn considerable attention because of their numerous health benefits, including potential anti-diabetic effects. Although the major targets and locations for the polyphenolic compounds to exert the anti-diabetic action are still unclear, the first organ that is exposed to these compounds is the GI tract in which polyphenols could modulate enzymes and hormones. Indeed, emerging evidence has shown that polyphenols can stimulate GLP-1 secretion, indicating that these natural compounds might exert metabolic action at least partially mediated by GLP-1. This review provides an overview of nutritional regulation of GLP-1 secretion and summarizes recent studies on the roles of polyphenols in GLP-1 secretion and degradation as it relates to metabolic homeostasis. In addition, the effects of polyphenols on microbiota and microbial metabolites that could indirectly modulate GLP-1 secretion are also discussed.


1995 ◽  
Vol 117 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Michal Toborek ◽  
Steven W. Barger ◽  
Mark P. Mattson ◽  
Craig J. McClain ◽  
Bernhard Hennig

2021 ◽  
Vol 19 (1) ◽  
pp. 44-52
Author(s):  
A.P. Shumilov ◽  
◽  
M.Yu. Semchenkova ◽  
D.S. Mikhalik ◽  
T.G. Avdeeva ◽  
...  

Vitamin D plays an important role in decreasing the risk of developing type 2 diabetes by influencing calcium metabolism, thereby reducing β-cell dysfunction and preventing insulin resistance. The findings of research works are contradictory enough, although some of them demonstrated an inverse relationship between vitamin D levels and the incidence of type 2 diabetes. The article describes the biological mechanisms of relationships between vitamin D levels and type 2 diabetes, reviews the results of the studies conducted and summarizes the available data. Key words: vitamin D, type 2 diabetes mellitus, insulin resistance


Sign in / Sign up

Export Citation Format

Share Document