High Temperature Test Report for the AN/TRN-41 TACAN Navigational Set

1977 ◽  
Author(s):  
E-SYSTEMS INC SALT LAKE CITY UT MONTEK DIV
Author(s):  
Chenglong Wang ◽  
Yao Xiao ◽  
Jianjun Zhou ◽  
Dalin Zhang ◽  
Suizheng Qiu ◽  
...  

The Fluoride-salt-cooled High temperature Reactor (FHR) is new reactor concept-about a decade old which is mainly on going in China and U.S. The preliminary thermal-hydraulic studies of the Fluoride salt cooled High temperature Test Reactor (FHTR) is necessary for the development of the FHR technology. In this paper, the thermal-hydraulics of FHTR (also called TMSR-SF) designed by Shanghai Instituted of Applied Physics (SINAP) is studied in different power modes. The temperature distributions of the coolant and the fuel pebble are obtained using a steady-state thermal-hydraulic analysis code for FHR. The comprehensive local flow and heat transfer are investigated by computational fluid dynamics (CFD) for the locations where may have the maximum pebble temperature based on the results from single channel analysis. The profiles of temperature, velocity, pressure and Nu of the coolant on the surface of the pebble as well as the temperature distribution of a fuel pebble are obtained and analyzed. Numerical results showed that the results of 3-D simulation are in reasonable agreement with that of single channel model and also illustrated safety operation of the preliminary designed TMSR-SF in different power mode.


2014 ◽  
Vol 912-914 ◽  
pp. 1294-1298
Author(s):  
Li Yan Zhao

With PID as its control center, this system overcomes the uncontrol of temperature, lower efficiency, difficult operation and other drawbacks occurring in precious microphone high-temperature test system. Characterized by excellent adaptability, automatic heating and constant temperature function, and simple operation, the high-temperature test system can meet the special requirements during microphone high temperature operation, evaluate the phase, frequency response, background noise and other product indexes in a high temperature ambient, and possess a very high marketing application value.


2013 ◽  
Vol 686 ◽  
pp. 170-179 ◽  
Author(s):  
Esah Hamzah ◽  
Maureen Mudang ◽  
Ang Khwang Jenq ◽  
Muhammad Adil Khattak

Creep damage investigation was carried out in Fe-Ni-Cr alloy at 800°C, 900°C, and 983°C using rectangular section form of specimen. In all the tests conducted on this material, some creep curves showed primary stage, secondary stage and tertiary stage. The creep fracture shows ductile transgranular fracture where separation occurred at the dendrites carbide interface suggesting that the detrimental effect of creep was compounded by precipitation of carbides at matrix. The presence of cavities may be due to the difference in thermal expansion characteristics of the austenite and carbide during high temperature test. Coarsening of carbides lead to cavities formation within the dendrite and carbide interface and form cavities linkage due to formation of crack and finally cause creep fracture. Increase in creep temperature it will lead to increase in creep rate. The fracture modes of creep samples were investigated to predict the failure mode.


2020 ◽  
Vol 10 (6) ◽  
pp. 1980 ◽  
Author(s):  
Lei Zhao ◽  
Ling-Yu Zhou ◽  
Guang-Chao Zhang ◽  
Tian-Yu Wei ◽  
Akim D. Mahunon ◽  
...  

To study the temperature distribution in the China Railway Track System Type II ballastless slab track on a high-speed railway (HSR) bridge, a 1:4 scaled specimen of a simply-supported concrete box girder bridge with a ballastless track was constructed in laboratory. Through a rapid, extreme high temperature test in winter and a conventional high temperature test in summer, the temperature distribution laws in the track on the HSR bridge were studied, and the vertical and transverse temperature distribution trend was suggested for the track. Firstly, the extreme high temperature test results showed that the vertical temperature and the vertical temperature difference distribution in the track on HSR bridge were all nonlinear with three stages. Secondly, the extreme high temperature test showed that the transverse temperature distribution in the track was of quadratic parabolic nonlinear form, and the transverse temperature gradient in the bottom base was significantly higher than that of the other layers of the track. Thirdly, the three-dimensional temperature distribution in the track on HSR bridge was a nonlinear, three-stage surface. Furthermore, similar regularities were also obtained in the conventional high temperature test, in which the temperature span ranges were different from those of the extreme high temperature test. In addition, the conventional high temperature test also showed that under the natural environment conditions, the internal temperature gradient in the track layers changed periodically (over a period of 24 h).


2013 ◽  
Vol 405-408 ◽  
pp. 2660-2664
Author(s):  
Wei Jun Cao ◽  
Man Li Ou ◽  
Fang Cheng Liu

The mechanical property of the concrete under high temperature will go through great changes with much greater deformation. The uneven temperature distribution causes equilibrium temperature stress of the cross section and deformation of components, thus damaging the structure system of the concrete. This paper conducts a high-temperature test on the C25 concrete specimen with fire retardant coating, compares the test result with the test on the C25 concrete specimen without fire retardant coating, and analyzes the protective role of the surface fire retardant coating in the concrete structure buildings in case of fire.


Sign in / Sign up

Export Citation Format

Share Document