scholarly journals Climate Change Impacts on Agriculture, a Case Study of Bangladesh, India, Nepal, and Pakistan

2021 ◽  
Vol 5 (2) ◽  
pp. 35-48
Author(s):  
Medani P. Bhandari

Climate change raises the risk on food security, alters the cropping pattern, and secondly, it also plays the triggering role to widen inequality. The South Asian region is home to nearly half of the poor and malnourished population of the world. In South Asia — Bangladesh, India, Nepal, and Pakistan encounter similar climate induced changes though they differ in their socio-political, economic, and cultural conditions. The physiological population densities (farming population per unit of agricultural land) suggest that these countries belong to the threat zone in terms of climate change impact on agriculture. It has been obvious that any unfavorable climatic conditions mean poor agricultural growth which will have serious ramification on the countries’ economies. Poverty induces poverty; because of the rudimentary technologies used in agriculture, more manpower is needed for farming thus encouraging couples to increase family manpower to invest on farming, which might lead to overpopulation. This paper evaluates how climate change has direct impact on the agricultural development and broader economic growth in the global context and South Asia (Bangladesh, India, Nepal, and Pakistan). Paper unveils the climate change induced challenges in agriculture with the empirical evidence, elaborates the consequences to the farmers livelihood and food security. Based on secondary information, this paper provides climate change risk scenario and recommends few coping strategies to minimize the climate change impact in farming systems and pathway for the future research.

Author(s):  
Ali Syed ◽  
Urooj Afshan Jabeen

Research on the impact of climate change on agriculture and food security is important, especially in the agricultural economies, not only to know the severity of impact but also the policies to be adapted to halt climate change and the technology to be used to mitigate the impact of climate change. The study was conducted in Kapiri Mposhi district of Central Province in Zambia to find out the impact of climate change on agriculture and food security. The objectives of study include to know the intensity of climate change and its impact on area under cultivation, late sowing of seed and damage of seed due to lack of water, fertilizer absorption reduction, food shortage, livestock, and productivity. The chapter also focuses on the sources of credit to the farmers.


Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Katiana Constantinidou ◽  
George Zittis ◽  
Panos Hadjinicolaou

The Eastern Mediterranean (EM) and the Middle East and North Africa (MENA) are projected to be exposed to extreme climatic conditions in the 21st century, which will likely induce adverse impacts in various sectors. Relevant climate change impact assessments utilise data from climate model projections and process-based impact models or simpler, index-based approaches. In this study, we explore the implied uncertainty from variations of climate change impact-related indices as induced by the modelled climate (WRF regional climate model) from different land surface schemes (Noah, NoahMP, CLM and RUC). The three climate change impact-related indicators examined here are the Radiative Index of Dryness (RID), the Fuel Dryness Index (Fd) and the Water-limited Yield (Yw). Our findings indicate that Noah simulates the highest values for both RID and Fd, while CLM gives the highest estimations for winter wheat Yw. The relative dispersion in the three indices derived by the different land schemes is not negligible, amounting, for the overall geographical domain of 25% for RID and Fd, and 10% for Yw. The dispersion is even larger for specific sub-regions.


2019 ◽  
Vol 11 (24) ◽  
pp. 7224 ◽  
Author(s):  
Afshin Ghahramani ◽  
S. Mark Howden ◽  
Agustin del Prado ◽  
Dean T. Thomas ◽  
Andrew D. Moore ◽  
...  

Managed temperate grasslands occupy 25% of the world, which is 70% of global agricultural land. These lands are an important source of food for the global population. This review paper examines the impacts of climate change on managed temperate grasslands and grassland-based livestock and effectiveness of adaptation and mitigation options and their interactions. The paper clarifies that moderately elevated atmospheric CO2 (eCO2) enhances photosynthesis, however it may be restiricted by variations in rainfall and temperature, shifts in plant’s growing seasons, and nutrient availability. Different responses of plant functional types and their photosynthetic pathways to the combined effects of climatic change may result in compositional changes in plant communities, while more research is required to clarify the specific responses. We have also considered how other interacting factors, such as a progressive nitrogen limitation (PNL) of soils under eCO2, may affect interactions of the animal and the environment and the associated production. In addition to observed and modelled declines in grasslands productivity, changes in forage quality are expected. The health and productivity of grassland-based livestock are expected to decline through direct and indirect effects from climate change. Livestock enterprises are also significant cause of increased global greenhouse gas (GHG) emissions (about 14.5%), so climate risk-management is partly to develop and apply effective mitigation measures. Overall, our finding indicates complex impact that will vary by region, with more negative than positive impacts. This means that both wins and losses for grassland managers can be expected in different circumstances, thus the analysis of climate change impact required with potential adaptations and mitigation strategies to be developed at local and regional levels.


2015 ◽  
Vol 29 ◽  
pp. 286-287 ◽  
Author(s):  
Pytrik Reidsma ◽  
Joost Wolf ◽  
Argyris Kanellopoulos ◽  
Ben F. Schaap ◽  
Maryia Mandryk ◽  
...  

2012 ◽  
Vol 33 (2) ◽  
pp. 363-374 ◽  
Author(s):  
Liming Ye ◽  
Wei Xiong ◽  
Zhengguo Li ◽  
Peng Yang ◽  
Wenbin Wu ◽  
...  

2019 ◽  
Vol 38 (2) ◽  
pp. 65
Author(s):  
Yeli Sarvina

<p>Climate change has significant negative impact on agriculture in tropical region. Inrecent years, research on climate change has focused mainly on food crops while horticultural crops have received little attention. This paper is an overview of Indonesian future climate projection for precipitation, temperature and extreme climate, climate change impact and adaptation strategies on vegetable and fruit crops and future challenge for horticultural development under climate change. The climate change will decrease crop productivity and quality, increase the incidence of new pest and disease, and the outbreaks on vegetable and fruit crops. Further climate change will disrupt water availability, alter climate-crop suitability and cause crop failure due to extreme climate. Several adaptation measures have been developed in farming system, among other adjustment of planting time, using resistant varieties to environmental strees, adopting irrigation technology for efficient water use, using green house and increasing farmers and extention service capacity through climate field school. For future research it is necessary to assess climate projections with several scenarios and Global Circular Models (GCMs) and their impact on future vegetable and fruits crops by developing crop modeling which should be given a priority of in agriculture. This information crucially needed for adaptation strategy and a long term agricultural planning in the future.</p><p>Keywords: Vegetable, fruit, climate change, global circular model, adaptation </p><p> </p><p><strong>Abstrak</strong></p><p>Perubahan iklim berdampak negatif terhadap pertanian di daerah tropis. Selama ini penelitian dampak perubahan iklim terhadap pertanian lebih banyak dilakukan pada tanaman pangan, sementara pada tanaman hortikultura, khususnya sayuran dan buah-buahan masih terbatas. Tulisan ini merupakan tinjauan tentang proyeksi dampak perubahan iklim di Indonesia yang meliputi curah hujan, suhu udara, dan iklim ekstrim terhadap produksi tanaman buah dan sayuran, di samping berbagai upaya adaptasi yang telah dilakukan dan tantangan pembangunan hortikultura ke depan. Perubahan iklim pada tanaman sayuran dan buah-buahan terbukti menurunkan kuantitas dan kualitas produksi, munculnya hama penyakit baru, meningkatnya serangan hama dan penyakit, gagal panen, penurunan kapasitas air irigasi, perubahan kesesuian lahan dan tanaman. Beberapa langkah adaptasi yang sudah dilakukan yaitu penyesuaian sistem usaha tani yang meliputi penggunaan varietas toleran cekaman lingkungan, penyesuian waktu tanam, penggunaan teknik irigasi hemat air, pengembangan teknologi pencarian sumber daya air baru, penggunaan rumah kasa/rumah plastik, peningkatan kemampuan petani dan penyuluh dalam memahami perubahan iklim melalui sekolah lapang. Ke depan masih perlu dilakukan kajian proyeksi iklim dengan berbagai skenario dan berbagai Global circular model (GCM) serta kajian dampak perubahan iklim terhadap tanaman sayur dan buah unggulan melalui pengembangan pemodelan sistem usaha tani. Informasi proyeksi dampak perubahan iklim diperlukan sebagai upaya adaptasi dan perencanaan pembangunan pertanian yang dikaitkan dengan perubahan iklim.</p><p>Kata kunci: Buah-buahan, sayuran, perubahan iklim, global circular model, adaptasi </p>


2020 ◽  
Author(s):  
Margaret S. Gumisiriza ◽  
Patrick A. Ndakidemi ◽  
Ernest R. Mbega

Agriculture is the economic back-borne of majority of developing countries worldwide. The sector employs over 50% of the working population and contributes about 33% of the Gross Domestic Product (GDP) in majority of African states. However, such contribution by the agricultural sector is likely to be affected by climate change, increasing human population and urbanization which impact on available agricultural land in various ways. There is thus an urgent need for developing countries to create or adopt technologies such as; soil-less farming that will not only address climate change challenges but also enhance crop production for improved food security. This paper reviews the science, origin, dynamics and farming systems under the soil-less agriculture precisely hydroponic farming to assist in widening the scope of knowledge of the hydroponic technologies and their implementation in Africa.


Sign in / Sign up

Export Citation Format

Share Document