scholarly journals EFFECT OF CONTROLLED ATMOSPHERE STORAGE ON PEACH QUALITY.

HortScience ◽  
1990 ◽  
Vol 25 (8) ◽  
pp. 854f-854
Author(s):  
Ahmed F. El-Shiekh ◽  
David H. Picha

Peaches stored in air for 40 days at OC developed severe internal breakdown and poor quality after transferring them to 20C to ripen. Comparable fruit stored under controlled atmosphere (1% O2 + 5% CO2) and then ripened at 20C had no breakdown and retained good quality. Fruit stored under CA had less reducing sugars but more sucrose than air stored fruit. Fruit pH increased and titratable acidity decreased over a 40 day storage period. Citric acid increased slightly while malic acid decreased during storage. Little or no differences in overall acidity and individual organic acids existed between CA and air storage. Little or no change in individual phenolic acid content occurred during storage or between CA and air storage. Internal color darkened and became redder with storage. CA stored fruit was significantly firmer than air stored fruit. Sensory evaluation indicated CA stored fruit was more acidic, sweeter, and had better overall flavor than air stored fruit.

2014 ◽  
Vol 86 (1) ◽  
pp. 485-494 ◽  
Author(s):  
CRISTIANO ANDRÉ STEFFENS ◽  
CASSANDRO V.T. DO AMARANTE ◽  
ERLANI O. ALVES ◽  
AURI BRACKMANN

The objective of this study was to evaluate the effect of controlled atmosphere (CA) on quality preservation of ‘Laetitia’ plums, mainly on internal breakdown, in order to determine the best CA storage conditions. Two experiments were carried out one in 2010, and another in 2011. In 2010, besides cold storage (CS; 21.0 kPa O2 + 0.03 kPa CO2), the fruits were stored under the following CA conditions (kPa O2+kPa CO2): 1+3, 1+5, 2+5, 2+10, and 11+10. In 2011, the fruits were stored under CS and CA of 1+0, 1+1, 2+1, and 2+2. The fruit stored under different CA conditions had lower respiration and ethylene production, better preservation of flesh firmness, texture and titratable acidity, lower skin red color, and lower incidence of skin cracking than the fruit in CS. In 2010, the fruit under CA with 2+5, 1+5, and 1+3 had a pronounced delay in ripening, although it exhibited a high incidence of internal breakdown. In 2011, the CA conditions with 2+1 and 2+2 provided the best delay in ripening and a reduced incidence of internal breakdown. The best CA condition for cold storage (at 0.5°C) of ‘Laetitia’ plums is 2 kPa O2 + 2 kPa CO2.


2002 ◽  
Vol 32 (4) ◽  
pp. 571-576 ◽  
Author(s):  
Adriano Arriel Saquet ◽  
Josef Streif

The chlorophyll fluorescence technique was evaluated as a possible predictive and nondestructive method to detect low-O2 and/or high-CO2 injuries in 'Conference' pears and 'Jonagold' apples stored in controlled atmosphere (CA). The fruits were kept at 0°C in air, 1% CO2 + 2% O2 or 3% CO2 + 1% O2 during five months. Fluorescence parameters of minimal fluorescence (Fo), maximal fluorescence (Fm), and potential quantum yield - (Fm-Fo):Fm, also denoted as Fv:Fm- as well as the incidence of browning disorders were evaluated at several times during storage. No incidence of browning disorders was observed in 'Jonagold' apples, however, they showed a decrease in Fv:Fm during storage time with no differences between the CA-conditions. Air-stored apples showed a higher decrease in Fv:Fm. On the other hand, 'Conference' pears kept in 3% CO2 + 1% O2 developed a lot of browning injuries such as core flush, flesh browning and cavities. Under this CA-condition, a pronounced decrease in the quotient Fv:Fm was observed already in the first 15 days of storage prior to the development of browning, and this behaviour remained during the whole storage period. The air-stored pears showed a similar behaviour as of the air-stored apples with a pronounced decrease in the Fv:Fm at the end of the storage period. The present results indicate that chlorophyll fluorescence is a promising technique to detect browning injuries in 'Conference' pears prior to their development.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 469a-469
Author(s):  
Salah E. Youssef ◽  
Elizabeth J. Mitcham

Peaches and apricots were obtained at harvest. One-half were inoculated with the brown rot organism (Monilinia fructicola) and incubated overnight before immersion in 52C water for 2.5 and 2 minutes, respectively. Fruit were placed in storage at SC in air, 2% O2 and 15% CO2, or 17% O2 and 15% CO2 for 5 or 15 days before ripening at 20C. For peach, controlled atmosphere (CA) had no influence on decay while hot water significantly reduced decay incidence and severity. For apricot, after 15 days cold storage, both hot water and controlled atmosphere storage reduced decay incidence and severity. CA with 2% O2 and 15% CO2 controlled decay better than 17% O2 and 15% CO2. Growth and sporulation of Monilinia fructicola in air and CA was also evaluated in vitro. The combination of heat and CA controlled decay better than either treatment alone. The hot water treatment resulted in minor surface injury on peaches while apricots were not injured. Fruit were evaluated after storage for firmness, soluble solids, and titratable acidity. Accumulation of ethanol and acetaldehyde as a result of CA storage was monitored.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 254E-255
Author(s):  
Laura Lehman-Salada ◽  
George M. Greene

In both experiments. 20-apple samples from 6 commercial orchards were harvested and stored in 208 liter containers at 0C for 4, 6, and 8 months. Additional samples were removed from CA and held at 0C for 14 days before evaluation. Gas composition was measured and controlled 6 times per day using automatic control equipment. In the first experiment, samples were stored at constant 0.0% CO2 and one of three O2 regimes (constant 2.0%. 0.5 rising to 3.5%. or 3.5% falling to 0.5% O2). Apples stored at 3.5% falling to 0.5% O2 during the storage period were softer than apples held at constant 2.0% or those held at 0.5% rising to 3.5% O2 during the storage period. Variable O2 concentrations did not influence weight loss during storage and insignificant scald, flesh browning, core browning, rot, and low 02 injury were observed. In the second experiment, samples were stored at constant 2.0% O2 and one of three CO2 regimes (constant 0%, constant 5%. or 0% rising to 6% CO2). Constant 5% or rising CO2 conditions did not significantly influence flesh softening or weight loss during storage. Negligible CO2 injury was observed.


HortScience ◽  
1992 ◽  
Vol 27 (12) ◽  
pp. 1261a-1261
Author(s):  
S.R. Drake ◽  
S.K. Ivanov

In 1989 and 1990, `Golden Delicious' apples from controlled-atmosphere (CA) storage (1% O2; 3% CO2) averaged 8.5 N firmer after 30 days and 13.5 N firmer after 60 days of storage than apples from regular-atmosphere (RA) storage. After 7 days of ambient storage, `Golden Delicious' apples from CA storage were 10.3 N firmer than apples from RA storage. Little change in color was evident in `Golden Delicious' apples from CA storage after 30 or 60 days, but a distinct increase in yellow color was evident in apples from RA storage after only 30 days. The quality (color, firmness, and acidity) of `Golden Delicious' apples stored for 30 days under CA and then 30 days under RA was superior to that of `Golden Delicious' apples after 60 days of RA storage and similar to that of `Golden Delicious' apples after 60 days of CA storage. `Granny Smith' apples, traditionally a very firm apple regardless of the type of storage, averaged 3.3 N firmer after 30 days of CA storage (1% O2; 1% CO2) and 5.8 N firmer after 60 days of CA storage when compared to apples from RA storage. Little change in color was evident in `Golden Delicious' apples regardless of storage length, but under ambient storage temperatures, `Golden Delicious' apples from CA storage maintained their green color longer. Titratable acidity of both `Golden Delicious' and `Granny Smith' apples depended on growing season, and neither `Golden Delicious' nor `Granny Smith' apples showed consistent trends in titratable acidity after either RA or CA storage.


2016 ◽  
Vol 23 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Elena Sanchís ◽  
Milagros Mateos ◽  
María B Pérez-Gago

The combined effect of antibrowning dips and controlled atmosphere storage on fresh-cut “Rojo Brillante” persimmon quality was investigated. Persimmon slices were dipped in 10 g L−1 ascorbic acid, 10 g L−1 citric acid or water and were stored in different controlled atmospheres at 5 ℃. Controlled atmosphere conditions were 21 kPa O2 + 10 kPa CO2 (Atm-B), 21 kPa O2 + 20 kPa CO2 (Atm-C), 5 kPa O2 + 10 kPa CO2 (Atm-D) and 5 kPa O2 in the absence of CO2 (Atm-E). Air (Atm-A) was used as a control. Atmospheres with high CO2 concentrations induced darkening, associated with a flesh disorder known as “internal flesh browning”. Only the samples placed in Atm-E, and treated with 10 g L−1 ascorbic acid or 10 g L−1 citric acid, controlled enzymatic browning, reduced firmness loss and prevented the “internal flesh browning” disorder. The maximum limit of marketability was achieved in the samples treated with 10 g L−1 citric acid and stored in Atm-E for nine storage days at 5 ℃. The total vitamin C, free radical scavenging activity, total phenolic content and total carotenoids of the fresh-cut “Rojo Brillante” persimmons were affected by maturity stage at harvest, whereas antibrowning dips and controlled atmosphere storage had no clear effect.


2000 ◽  
Vol 80 (3) ◽  
pp. 623-630 ◽  
Author(s):  
Suzy Y. Rogiers ◽  
N. Richard Knowles

Changes in fruit quality of saskatoon (cvs. Pembina, Smoky, Northline, and Thiessen) stored under three O2 levels (2, 10, and 21%) factorially combined with two CO2 concentrations (0.035% and 5%) were assessed during 56 d of storage at 0.5 °C. The 5% CO2 atmosphere combined with 21 or 10% O2 was most effective at minimizing losses in fruit soluble solids, anthocyanins, firmness, and fresh weight. Fungal colonization of fruit after 8 wk of storage was eliminated in 5% CO2 at all O2 concentrations. Storage of fruit in 0.035% CO2 and 21 or 10% O2 resulted in the highest titratable acidity and lowest ethanol concentrations. Ethanol did not exceed 0.03% in fruit stored in any of the atmospheres. While changes in some of the quality characteristics of fruit during storage were cultivar dependent, differences among cultivars were small, and all four cultivars benefited from controlled atmosphere storage. Key words:Amelanchier alnifolia, saskatoon fruit, controlled atmosphere, postharvest quality


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 469b-469
Author(s):  
James Mattheis ◽  
David Buchanan ◽  
John Fellman ◽  
Nathan Reed ◽  
Stemilt Growers

Sweet cherry ripening is slowed during low oxygen and/or high carbon dioxide controlled atmosphere storage. Cherry flavor can be impacted by prolonged CA storage, therefore ripening after CA and storage was evaluated including production of fruit volatile compounds. `Bing' sweet cherries were harvested at commercial maturity and stored for up to 12 weeks at 1C in air or 5% O2, with 0.1, 10, 15 or 20% CO2. Fruit quality and condition were evaluated after removal from storage plus 1 or 4 days at 20C. Changes in fruit color were slow ed by all atmosphere treatments with differences most notable after longer storage durations. Volatile synthesis changed as storage duration increased, however, treatment differences were not significant. Soluble solids content was maintained at 15 and 20% CO2, but treatment differences were significant only after longer storage durations. High CO, treatments were effective at reducing decay incidence, but residual suppression after removal from storage decreased as storage duration increased. Significant treatment effects were evident for titratable acidity retention after 8 and 12 weeks storage, however, titratable acidity significantly declined in all treatments compared to the initial concentration.


Sign in / Sign up

Export Citation Format

Share Document