scholarly journals USE OF CLONALLY REPLICATED SEEDLINGS IN FIELD SCREENING FOR RESISTANCE TO PEACH TREE SHORT LIFE

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 657g-658
Author(s):  
W.R. Okie ◽  
T. G. Beckman ◽  
A.P. Nyczepir

Lovell rootstock is recommended for Peach Tree Short Life (PTSL) sites in the Southeast because it outlives Nemaguard. No genetic studies of PTSL tolerance have been done. Clonally replicated peach seedlings [Prunus persica (L.) Batsch] of Lovell, Nemaguard and four F1 selections of Lovell × Nemared were tested for field survival in a high density planting on a PTSL site. Rootstock families (12 seedlings × 8 ramets each) differed in growth, survival and longevity. Genetic variation was comparable to environmental variation for most families. Based on seedling within rootstock family, estimated broad-sense heritabilities for survival and longevity were high. The use of clonally replicated seedlings allowed the selection of apparently superior individuals from both Lovell and the other more short-lived rootstock families in a single screening after 6 years. Survival of Lovell at that time was 50% compared to 16-29% for other families. Across all families, all 8 ramets were dead for 21 seedlings, whereas all 8 were alive for only 3 seedlings.

1993 ◽  
Vol 118 (1) ◽  
pp. 115-118 ◽  
Author(s):  
T.G. Beckman ◽  
W.R. Okie ◽  
A.P. Nyczepir

Clonally replicated peach seedlings [Prunus persica (L.) Batsch] of Lovell, Nemaguard, and four F1 selections of Lovell × Nemared were tested for field survival on a peach tree short life site. Rootstock families differed in growth, survival, and longevity. Genetic variation was similar to environmental variation for most families. Based on seedling within rootstock family, estimated broad-sense heritabilities for survival and longevity were high. The use of clonally replicated seedlings allowed the selection of apparently superior individuals from both Lovell and the other more short-lived rootstock families in a single screening.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1062-1065 ◽  
Author(s):  
T.G. Beckman ◽  
W.R. Okie ◽  
A.P. Nyczepir ◽  
P.L. Pusey ◽  
C.C. Reilly

Nearly 5000 seedling trees representing more than 100 peach [Prunus persica (L.) Batsch.] and plum (Prunus spp.) lines were planted at a 4 × 0.6-m spacing in Jan. 1983, on a site with a known history of peach tree short life (PTSL) and Armillaria root rot (ARR). Trees were arranged in a randomized complete-block with eight replicates of six trees each. Beginning in Spring 1984 and each year thereafter the cause of tree death was determined. At the end of 9 years, 50% of the trees had succumbed to PTSL and 35% had been killed by ARR apparently caused by Armillaria tabescens. Analysis of the data for trees killed by ARR showed a wide range in mortality, some peach lines appeared significantly more tolerant to ARR than others. Plum lines derived from native North American species also appeared to be a potential source of improved tolerance. We did not establish whether ARR tolerance is affected by PTSL.


Plant Omics ◽  
2019 ◽  
pp. 25-30
Author(s):  
Ivan Ricardo Carvalho ◽  
Vinícius Jardel Szareski ◽  
Gustavo Henrique Demari ◽  
Maurício Horbach Barbosa ◽  
Franciene Lautenchleger ◽  
...  

The objective of this work was to apply the phenotypic multicarter selection and predictive genetic for the attributes of the yield of common black bean seeds in the segregating generations F2, F3 and F4.The experimental design was augmented blocks, where the BRS Esplendor (BE), BRS Supremo (BS) and IPR Tiziu (IT) genotypes were used as controls arranged in four replicates, the other treatments were organized in a unique way in the experiment, the F2 segregating generation being represented by 36 common black bean populations, F3 segregating generation composed of 72 families and the F4 segregating generation formed by 44 families. The multicarter phenotypic index provided the simultaneous selection for the number and mass of seeds per plant, independent of the segregating generation of common black bean.Multicarter genetic variation is superior for the F3 segregating generation, with pronounced environmental effects on the F4 generation.The F4 segregating families express superiority to the genetic gain and magnitude of superior genotypes in relation to the commercial controls, where high genetic increase is exposed between the F3 to F4selection.The use of the phenotypic index expresses applicability to the selection of common black bean genotypes to increase seed yield.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 370-375 ◽  
Author(s):  
Richard E.C. Layne ◽  
Chin S. Tan ◽  
David M. Hunter ◽  
Robert A. Cline

Seven treatment combinations of irrigation and fertilizer were compared in a high-density (606 trees/ha) management system for peach [Prunus persica (L.) Batsch cv. Harrow Beauty/Bailey] on Fox sand in southwestern Ontario. Each treatment combination had an irrigation component (N = nonirrigated, D = drip irrigated, or M = microsprinkler irrigated) and a fertilizer placement component (B = banded fertilizer, L = low fertigation, or H = high fertigation). NB and DB are commonly used systems in Ontario, while the other five treatment combinations were experimental. Total soil water in the top 110 cm of soil was lowest under NB but was never at the permanent wilting point. Trunk cross-sectional area was largest under DH and DB, smallest under ML and NB, and intermediate for the other three treatment combinations. No symptoms of N or K deficiency or toxicity were noted for any of the fertilizer treatments. Leaf analyses in July and September indicated that most major and minor elements were in the adequate to slightly excess range. However, there were no significant treatment effects on leaf nutrient concentrations in July or September when averaged over the five years, except for Mg in July. There were large and significant year effects on leaf nutrient concentrations but no significant treatment × year interactions. During the first four cropping years, there were no significant treatment effects, averaged over years, for total yield, marketable yield, or cumulative yield efficiency; however, there were large year effects but no treatment × year interactions for these factors. There was no detectable yield advantage for D vs. M irrigation. B application of N and K promoted no higher yields than fertigation equivalent to the B rate or 50% of this rate. Fertigation of N and K during the first 4 years of this experiment did not provide a detectable yield advantage to warrant the added cost and labor associated with this system compared with the B applications of N and K.


2012 ◽  
Vol 58 (3) ◽  
pp. 85-92
Author(s):  
Basel Saleh

This study was performed to assess genetic variability and chemical components of five upland cotton (Gossypium hirsutum L.) varieties grown in Syria using AFLP and NIR techniques. These varieties present considerable interest for genetic studies and plant improvement. Twenty-one AFLP PCs primer combinations yielded 1,017 discernible loci of which 495 (50.569%) were polymorphic. Selected markers/primer pairs were ranged between 22 (E-AGA/T-GAA) and 89 (E-GAA/ T-CTT) fragments with an average of 48.429 fragments per primer pair. Marker Index (MI) average for AFLP markers was estimated to be 5.036. Our data revealed that both techniques gave relatively similar results regarding the degree of relatedness among the tested varieties. The pattern generated in NIR technique partially correlated with the other one revealed by AFLP technique. Summarizing all results obtained from NIR and AFLP techniques, we could conclude that chemical structure was relatively reflected in genetic variation among the tested cotton varieties.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 666d-666
Author(s):  
U.L. Yadava

A planting of 48 trees of `Redhaven' scion on Lovell, Nemaguard, and Wildpeach rootstocks (RS) was established in 1990, with four replications in randomized complete-block design. Cultural practices common in Georgia were used to maintain the planting. Orchard performance for peach tree short life (PTSL) related tree survival, RS suckering, fungal gummosis, and tree stresses from cold injury and Pseudomonas canker, was investigated to examine RS potential of Wildpeach compared with Lovell and Nemaguard. Trees on all RS showed 100% survival for the first 5 years in the orchard. Although canker became more prevalent in later years, trees had significantly higher ratings on Nemaguard (2.88) and Lovell (2.50) RS than on Wildpeach (1.44). However, PTSL stress enraged by Pseudomonas killed one tree each on Lovell and Wildpeach RS during 1995. Trunk cambial browning that estimated cold injury was trivial due to mild winters; however, trees on Nemaguard had higher TCB ratings (1.25) than on other RS. Trees on Wildpeach had fewer suckers than on Nemaguard or Lovell. Gummosis ratings were higher on Nemaguard RS than on Lovell and Wildpeach. The results showed that Wildpeach has good potential for a peach RS.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 638g-638
Author(s):  
Umedi L. Yadava

A planting of 90 Redhaven peach (Prunus persica (L) Batsch) trees either budded to Lovell and Nemaguard rootstocks or on their own roots, was established in spring 1984 using in-ground 55-gallon microplots. Planting soils (top soil, not B and C layers) prepared in five ratios by mixing soils from peach tree short life (PTSL) and non-PTSL (NPSL) sites (100% PTSL, 75% PTSL + 25% NPSL, 50% of each, 25% PTSL + 75% NPSL, and 100% NPSL) as main plots, were replicated 3 times. Two trees per rootstock were randomized within main plots. The planting was maintained using conventional cultural practices. Observations for tree survival were recorded in December each year. During this investigation, both soil mix and root types significantly affected tree survival, which was consistently the highest in 100% NPSL and the lowest in 100% PTSL soil. Effects of other soil combinations were intermediate; however, greater tree mortality was associated with increased ratio of PTSL soil. Trees on Lovell roots invariably survived the best followed by those on Nemaguard roots and the lowest when on their own roots. As early as in fourth leaf, >55% of the own-rooted trees died compared to < 10% on either rootstock.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 792E-792
Author(s):  
Richard E.C. Layne ◽  
Chin S. Tan ◽  
David M. Hunter ◽  
Robert A. Cline

Seven high-density (606 trees/ha) management systems for peach [Prunus persica (L.) Batsch cv. Harrow Beauty/Bailey] were compared on Fox sand in southwestern Ontario. Each system had an irrigation component (N = none D = drip, M = microsprinkler) and a fertilizer placement component (B = banded, L= low-rate fertigation, H = high rate fertigation). NB (nonirrigated, banded fertilizer) and DB (drip-irrigated) are commonly used systems in Ontario, while the other five treatment combinations were experimental. Trunk cross-sectional area (TCA) was generally greatest for DH and DB systems, smallest for ML and NB systems, and intermediate for the other three. No symptoms of N or K deficiency or excess were noted for any of the fertilizer treatments. The seven management systems each had similar cumulative yield efficiencies for the first 4 cropping years However, total marketable yields for the 4 years were highest for MB (58.7 t·ha–1), followed in descending order by DB (56.8 t·ha–1), DH (56.6 t·ha–1), MH (53.9 t·ha–1), DL (50.6 t·ha–1), ML (49.8 t·ha–1), and NB (47.5 t·ha–1). Each of the irrigated treatments outyielded the nonirrigated check (NB) and ranged from 4.8% to 23.6%. Only one of the irrigated treatments (MB) outyielded the irrigated check (DB), and by only 3.3%. There was no clear advantage for either the drip or microsprinkler system of irrigation. Banded application of N and K appeared to promote higher yields than by fertigation equivalent to the banded rate, while yields at the low rate of fertigation were lower than for either the high rate of fertigation or the banded application. It appeared that banded fertilizer combined with either microsprinkler (MB) or drip irrigation DB provided the most-effective of the management systems in the first 4 cropping years.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Sign in / Sign up

Export Citation Format

Share Document