scholarly journals Controlling Annual Bluegrass (Poa annua L.) Summer Patch Disease with Faeriefungin

HortScience ◽  
1993 ◽  
Vol 28 (3) ◽  
pp. 195-196
Author(s):  
Brad P. Melvin ◽  
Muraleedharan G. Nair ◽  
Joe M. Vargas ◽  
A. Ronald Detweiler

Faeriefungin, an antibiotic produced by the actinomycete Streptomyces griseus var. autotrophicus MSU-32058/ATCC 53668, was tested in field trials on golf course fairways to determine if it could control annual bluegrass (Poa annua L.) summer patch effectively. Test sites with a history of severe summer patch outbreaks caused by Magnaporthe poae Landschoot and Jackson were chosen for study. Faeriefungin, when applied as a drench at 0.74 kg·ha-1, effectively controlled summer patch and was not significantly different than the fungicide fenarimol in three of four field trials. Faeriefungin may be an alternative to chemically controlling summer patch disease.

Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1698-1698 ◽  
Author(s):  
M. M. I. Bassoriello ◽  
K. S. Jordan

The ectotrophic, root-infecting fungus Magnaporthe poae Landschoot & Jackson, the causal agent of summer patch disease in the U.S. (2), is implicated in the damage and loss of annual bluegrass (Poa annua L.) on golf course greens. This pathogenic fungus, one of the important root pathogens of turfgrass, attacks and colonizes susceptible turfgrass roots suffering from environmental or cultural stresses. Over 100 turf samples that exhibited symptoms (chlorotic circular or irregular patches of ≥15 cm in diameter with necrotic crowns and discolored roots) reminiscent of summer patch were collected from 77 southwestern Ontario golf courses from July to August of 2009 and 2010. Roots and crowns were often covered with dark, ectotrophic runner hyphae, lobed hyphopodia, and growth cessation structures, characteristic of M. poae. Sections of root tissue were surface sterilized in 0.6% sodium hypochlorite (NaOCl) for 5 min. Sterilized root tissue was plated on potato dextrose agar (PDA) containing 50 mg L–1 streptomycin sulfate and incubated at 28°C for 7 to 10 days. A fungus with morphological characteristics (hyaline mycelium that appears gray or olive-brown when mature) similar to those of M. poae (1) was consistently isolated (≥100 isolates were obtained) and used to identify M. poae through molecular techniques and Koch's postulates. DNA was extracted from the fungal mycelium of the collected isolates using the PowerPlant DNA isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA). The rDNA internal transcribed spacer (ITS) regions of the isolates (≥100 isolates) were amplified by PCR using universal fungal rDNA primers ITS 4 (5′-TCCTCCGCTTATTGATATGC-3′) and ITS 5 (5′- GGAAGTAAAAGTCGTAACAAGG-3′) (3). The purified PCR products were sequenced (GenBank Accession No. JX134588 through JX134601) and a BLAST search exhibited seven isolates with 99% (MAG3, MAG6, MAG13, MAG16, and MAG17) and 100% (MAG1 and MAG14) similarity to M. poae in the GenBank database. Pathogenicity of four isolates (MAG1, MAG3, MAG6, and MAG14) was confirmed with Koch's postulates. Sixteen healthy P. annua core samples (four replicates of each treatment/isolate) collected from an Ontario golf course were inoculated with 25 mg M. poae-infested Kentucky bluegrass seed (Poa pratensis L.; 12.5 mg inoculum applied at the surface of the potting medium and 12.5 mg inoculum applied on the foliar surface) and were placed in a growth chamber with 12-h day/night cycles at 30/25°C and approximate relative humidity. After 2 to 3 weeks, inoculated plants exhibited chlorotic foliage and necrotic roots covered with dark ectotrophic runner hyphae and lobed hyphopodia. Infected root sections from each replication were surface sterilized and placed on PDA containing 50 mg L–1 streptomycin sulfate. The fungal cultures exhibited morphological characteristics consistent with M. poae (1). To our knowledge, this is the first report of summer patch caused by M. poae in Canada. References: (1) B. B. Clarke and A. B. Gould, eds. Turfgrass Patch Diseases Caused by Ectotrophic Root-Infecting Fungi. The American Phytopathological Society, St. Paul, MN, 1993. (2) P. J. Landschoot and N. Jackson. Mycol. Res. 93:59, 1989. (3) T. J. White et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al. eds. Academic Press, San Diego, CA, 1990.


HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 457-459
Author(s):  
Eric D. Miltner ◽  
Gwen K. Stahnke ◽  
Geoffrey J. Rinehart ◽  
Paul A. Backman

The recent release of `True-Putt' (previously `DW-184') creeping bluegrass [Poa annua L. f. reptans (Hauskins) T. Koyama] gives turfgrass managers a new option for seeding into annual bluegrass (Poa annua L.) greens. Because little is known about the culture and management of this newly available seeded cultivar, effective methods for seedling establishment into existing turfgrass canopies, both living and dead, were studied. Four surface cultivation treatments were compared for seedbed preparation before seeding into an existing turfgrass canopy. When seeding into dead turf, two passes with vertical mowing units were more effective than hollow-tine cultivation (HTC), solid-tine cultivation (STC), one pass with the vertical mower plus STC, and the uncultivated control during the first year. Differences were not significant during the second year, most likely because of shallower depth of the vertical mower. Plots averaged about 75% cover by 4 weeks after planting during both years, illustrating the rapid establishment potential for `True-Putt'. After seeding into a live turf canopy, seedlings were indistinguishable from the existing turf, making it impossible to evaluate establishment success.


Weed Science ◽  
1989 ◽  
Vol 37 (1) ◽  
pp. 54-59 ◽  
Author(s):  
W. Mary Lush

Morphological and physiological variation among annual bluegrass populations from the green, fairway, and rough were measured to determine the role annual bluegrass infestations outside the green play in maintaining the population in the green. Annual bluegrass populations from the fairway and the rough were similar to each other but differed from that of the green in habit, dry mass production, flowering, seed size, and germination. Seeds from each population established best in the type of turf from which they originated. It is concluded that, since few genotypes were common to the green and its surroundings, the populations in the fairway and rough played little or no role in maintaining the population of the green. The same is likely to be true wherever the management of greens and their surroundings differs sufficiently for marked population differentiation to occur. This finding does not preclude the possibility that some genotypes adapted to the green persist in the surroundings, and that these genotypes serve as sources of seeds for the colonization or reinfestation of annual bluegrass-free greens.


Weed Science ◽  
2014 ◽  
Vol 62 (1) ◽  
pp. 138-144 ◽  
Author(s):  
James T. Brosnan ◽  
Eric H. Reasor ◽  
Jose J. Vargas ◽  
Gregory K. Breeden ◽  
Dean A. Kopsell ◽  
...  

Prodiamine is a mitotic inhibiting herbicide regularly used to control annual bluegrass PRE. A population of annual bluegrass not controlled by prodiamine at 1,120 g a.i. ha−1was identified on a golf course in Alcoa, TN, in 2012. A whole-plant hydroponics bioassay was used to screen this biotype for prodiamine resistance (PR) compared with a known susceptible population (SS). Multitiller (i.e., > 4 tillers) PR and SS annual bluegrass plants were established in hydroponic culture and exposed to 0, 0.001, 0.01, 0.10, 1.0, and 10.0 mM prodiamine. Exposure to prodiamine at 0.001 mM reduced root growth of the SS biotype to 26% of the nontreated check (i.e., 0 mM prodiamine) but had no effect on the PR biotype. When exposed to 10 mM prodiamine, root growth of the PR biotype was reduced to 24% of the nontreated check compared with 9% for the SS biotype.I50values for the PR and SS biotypes were 0.04 and 2.8 × 10−6mM prodiamine, respectively. The PR biotype measured lower in plant height and leaf width than the SS population. In field trials, prodiamine at 560, 840, 1,120, and 1,400 g ha−1only controlled the PR biotype 0 to 22%. PRE applications of the cellulose biosynthesis inhibitor indaziflam at 35, 52.5, and 70 g a.i. ha−1controlled this PR biotype 70 to 97%. This marks the second instance of annual bluegrass developing resistance to prodiamine in Tennessee during the past 5 yr. Future research should evaluate indaziflam efficacy for control of other prodiamine-resistant biotypes of annual bluegrass as well as annual bluegrass biotypes resistant to herbicidal inhibitors of 5-enolpyruvylshikimic acid-3-phosphate synthase, acetolactate synthase, and photosystem II.


HortScience ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 522-526 ◽  
Author(s):  
Joshua J. Skelton ◽  
William Sharp ◽  
Bruce E. Branham

Six field trials were conducted in 2009 and 2010 to study postemergence control of annual bluegrass (Poa annua L. var. Hausskn Timm) in kentucky bluegrass (Poa pratensis L.) with mesotrione. Mesotrione was applied at 11 different rate and application intervals to an area of kentucky bluegrass that was naturally infested with annual bluegrass. Mesotrione rates of 56 g·ha−1 applied two or three times per week for a total of 10 applications or 84 g·ha−1 applied two times per week for a total of seven applications provided consistent control of annual bluegrass but required significant application labor and resulted in minor kentucky bluegrass injury. Other treatments that required fewer applications, 110 g·ha−1 applied twice per week for five applications or 186 g·ha−1 per week for three applications, also achieved high levels of control under high air temperatures, but control levels can vary significantly as temperatures fluctuate and seasons change. Mesotrione can successfully control annual bluegrass in kentucky bluegrass when frequent applications at low rates are applied or when environmental conditions are conducive to control.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1379-1379
Author(s):  
S. J. McDonald ◽  
R. M. Averell ◽  
M. E. Glass ◽  
H. M. Young ◽  
T. H. Mysliwiec ◽  
...  

In mid-November 2009, thin, yellow, and irregular-shaped scalloped rings 10 to 25 cm in diameter were observed on 5 to 10% of a golf course putting green in Charles Town, WV. The 20-year-old USGA-specification sand-based green was mowed at 3.1-mm height and consisted of 60% annual bluegrass (Poa annua L.) and 40% creeping bentgrass (Agrostis stoloniferous L. ‘Putter’). Minimum and maximum daily air temperature ranged from 2 to 22°C, respectively, with 38 mm of rainfall during the appearance of rings symptoms. Only affected annual bluegrass plants exhibited a peculiar yellow chlorosis of the upper and lower leaves. A single fungal isolate was obtained from active mycelium found within symptomatic annual bluegrass leaves and grown on potato dextrose agar (PDA) amended with chloramphenicol (0.1 g/liter). Fungal colony morphology (i.e., light yellow with irregular-shaped 2- to 4-mm-diameter sclerotia first appearing off-white but progressing to brown by 21 to 28 days in culture) and sequencing of the internal transcribed spacer (ITS) 5.8S rDNA region with primers ITS1 and ITS4 confirmed the isolate as Waitea circinata var. circinata (Warcup & Talbot) with ≥99% sequence identity with GenBank Accession No. FJ755889 (1,2,4). To confirm pathogenicity, a 6-mm-diameter plug of the isolate was removed from the expanding edge of a 4-day-old culture grown on PDA and placed in contact with the lower leaves of 12-week-old annual bluegrass (0.001 g of surface-sterilized seed per cm2) grown in 5- × 5-cm plastic pots of autoclaved 85% sand and 15% potting soil. Six pots were inoculated with the isolate and six pots were inoculated with an isolate-free agar plug and then placed in a moist chamber at 28°C. Leaf chlorosis and aerial mycelium was observed in all six inoculated pots 8 to 10 days after inoculation, and symptoms were similar to those expressed in the field. All noninoculated plants remained healthy and asymptomatic. W. circinata var. circinata was reisolated from symptomatic leaves and again confirmed by colony traits and sequencing of the ITS-5.8S rDNA region and submitted as GenBank Accession No. HM807582. To our knowledge, this is the first report of brown ring patch in West Virginia and could be economically important because of intensive fungicide practices used to maintain high-quality putting greens on golf courses (3). References: (1) C. Chen et al. Plant Dis. 91:1687, 2007. (2) K. de la Cerda et al. Plant Dis. 91:791, 2007. (3) J. Kaminski and F. Wong. Golf Course Manage. 75:98, 2007. (4) T. Toda et al. Plant Dis. 89:536, 2005.


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
Mark A. Czarnota

A biotype of annual bluegrass with suspected resistance to pronamide was collected from a golf course in Georgia. The objectives of this research were to determine the level of resistance to pronamide and the mechanisms associated with resistance. From POST applications, the pronamide rate that reduced shoot biomass 50% from the nontreated bluegrass measured>10 times higher for the resistant (R) biotype as compared with susceptible (S) biotypes. The R biotype was not controlled by PRE applications of dithiopyr or prodiamine, but was controlled >92% by PRE applications of pronamide at 0.56 and 1.68 kg ha−1. Mature plants (3- to 5-tiller) of the R biotype absorbed 32% less [14C]pronamide than the S biotype after 72 h in hydroponic culture and accumulated 39% less radioactivity per gram basis of dry shoot mass. The R biotype metabolized [14C]pronamide similar to the S biotype, averaging 16% of the extracted radioactivity. The resistance to POST pronamide applications in the R biotype is associated with reduced absorption and translocation compared with the S biotype.


2006 ◽  
Vol 20 (3) ◽  
pp. 722-727 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Studies were conducted in 2002 and 2003 on a golf course fairway in New Jersey to compare spring, summer, and fall treatments of bispyribac-sodium for annual bluegrass control and creeping bentgrass tolerance. Single applications at 74, 111, or 148 g ai/ha were applied in May, August, or October. Split applications of 37 followed by (fb) 37 or 74 fb 74 g/ha applied 3 wk apart were also evaluated. Summer-applied bispyribac-sodium did not reduce bentgrass quality, whereas spring and fall treatments reduced turf quality at 3 wk after treatment and fall treatments in 2002 substantially reduced bentgrass quality. Summer treatments were more effective than spring or fall treatments in reducing annual bluegrass cover. Final evaluations revealed 36, 31, 21, and 26% annual bluegrass cover averaged across nontreated, spring-treated, summer-treated, and fall-treated plots, respectively. This study demonstrates that two split applications of bispyribac-sodium at 74 g/ha in summer can effectively reduce annual bluegrass cover while minimizing creeping bentgrass injury.


Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 21-25 ◽  
Author(s):  
J. Scott McElroy ◽  
Michael L. Flessner ◽  
Zhuoyu Wang ◽  
Fenny Dane ◽  
Robert H. Walker ◽  
...  

Annual bluegrass is commonly controlled by acetolactate synthase (ALS)-inhibiting herbicides in managed turfgrass. An annual bluegrass population with suspected resistance to ALS-inhibiting herbicides was collected from Grand National Golf Course in Opelika, AL (GN population). Subsequent testing confirmed resistance of the GN population to foramsulfuron, trifloxysulfuron, bispyribac-sodium (bispyribac), and imazaquin when compared to a susceptible population collected locally at Auburn University (AU population). Sequencing of the ALS gene revealed a point mutation resulting in an amino acid substitution at Trp574. Cloning of the ALS gene surrounding the Trp574 region yielded two distinct ALS gene sequences: one producing Trp574 and one producing Leu574. Trp574 to Leu has been previously correlated with resistance to ALS-inhibiting herbicides. Both AU and GN gene sequences contained other similar silent and missense mutations. This research confirms resistance of annual bluegrass to ALS-inhibiting herbicides with Trp574 to Leu amino acid substitution being the most likely mode of resistance based on past literature.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 426-426 ◽  
Author(s):  
S. Kammerer ◽  
P. F. Harmon ◽  
S. McDonald ◽  
B. Horvath

Brown ring patch was first described as a disease of cool-season turfgrass on creeping bentgrass (Agrostis palustris) (4) in Japan and later reported in California on annual bluegrass (Poa annua) (2). Brown ring patch symptoms were observed beginning in December 2007 through spring 2008 on 6 of 18 putting greens on a golf course in Reston, VA. Symptoms included yellow rings and patches of blighted turfgrass on the mixed stands of creeping bentgrass (A. palustris) and primarily annual bluegrass (Poa annua). Chlorosis and blight occurred predominantly on P. annua. A turfgrass sample was received from a consultant in April 2008, and disease severity on affected greens was estimated to be 40%. After incubating for 2 days in a moist chamber, Rhizoctonia-like aerial mycelia were observed. The pathogen was isolated on water agar and potato dextrose agar amended with thiophanate-methyl (100 mg/L), rifampicin (100 mg/L), and ampicillin (500 mg/L) from P. annua plants that had been surface sterilized with 70% ethanol for 15 s. Colony and sclerotia morphology were consistent with Waitea circinata var. circinata as previously described (2,4). Hyphae were stained with aniline blue and multiple nuclei were observed per cell. The teleomorph was not observed on plant material or in culture. Amplified fragments of rDNA including internal transcribed spacers from the isolate were amplified in three bacterial clones and sequenced bidirectionally (GenBank Accession Nos. FJ154894, FJ154895, and FJ154896) using primers ITS1/ITS4 (2,4). The consensus sequences matched, with 99% homology and 99% sequence overlap, isolate TRGC1.1 of W. circinata var. circinata (GenBank Accession No. DQ900586) (2). Annual bluegrass was not available for use in performing Koch's postulates, but previous studies have shown that W. circinata var. circinata is pathogenic to roughstalk bluegrass (P. trivialis) (1,3). Pots of P. trivialis cv. Cypress that were 1 week postemergence were inoculated with seven wheat grains that had been autoclaved and then infested with the isolate. Plants were incubated at 25°C in a sealed plastic bag with a moist paper towel on the bottom. Hyphae grew from the grains and colonized the grass. Individual plants began to turn chlorotic within 3 days, and more than 80% of the turf in pots was dead after 1 week. Control pots were inoculated with autoclaved wheat seed and showed no disease symptoms after 1 week. Inoculations were repeated twice more with the same results. W. circinata var. circinata was reisolated from affected plants in all replications of the test. To our knowledge, this is the first report of brown ring patch in Virginia. Additional research is needed to assess the prevalence and importance of this disease on golf course putting greens in Virginia. References: (1) C. M. Chen et al. Plant Dis. 91:1687, 2007. (2) K. A. de la Cerda et al. Plant Dis. 91:791, 2007. (3) N. Flor et al. Plant Dis. 92:1586, 2008. (4) T. Toda et al. Plant Dis. 89:536, 2005.


Sign in / Sign up

Export Citation Format

Share Document