scholarly journals 1046 EFFECT OF POSTHARVEST CALCIUM TREATMENT OF APPLES ON POLYGALACTURONASE PRODUCED BY BOTRYTIS CINEREA.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 578c-578
Author(s):  
William S. Conway ◽  
Rowel B. Tobias ◽  
Stephane Roy ◽  
Alley E. Watada ◽  
Stephane Roy ◽  
...  

Decay caused by Botrytis cinerea is significantly reduced by increasing the calcium concentration of apple fruit tissue. Electron microscope studies have revealed that cracks in the epicuticular wax may be an important pathway by which calcium penetrates into the fruit and increases the calcium concentration. In fruit inoculated with B. cinerea, the decay induced compositional changes in the cell walls of high-calcium fruit were smaller than those observed in the low calcium treatment. The effect of calcium in reducing decay is associated with maintaining cell wall structure by delaying chemical changes in cell wall composition. B. cinerea produced five polygalacturonase isozymes in vitro but only one in vivo. Among the cations studied-m was the most potent inhibitor of polygalacturonase activity in in vitro studies. Its mode of inhibition appears to involve the alteration of substrate availability for hydrolysis, rather than any direct effect on the active sites of the enzyme.

1987 ◽  
Vol 33 (2) ◽  
pp. 142-150 ◽  
Author(s):  
J. W. Costerton ◽  
D. W. Lambe Jr. ◽  
K.-J. Mayberry-Carson ◽  
B. Tober-Meyer

When cells of both Staphylococcus aureus and Staphylococcus epidermidis are grown in batch culture in nutrient-rich media, their cell walls are regular in thickness, their cell size is within the normal range for each species, and their septation patterns are orderly. When cells of each of these species are examined directly in infected tissue in the rabbit tibia model infection, their cell wall thickness is often much increased and very irregular around the circumference of the cell, their cell size is often increased, and their septation patterns are often severely deranged. All of these alterations in cell wall structure occur in the absence of antibiotics, and we suggest that they may be an expression of phenotypic plasticity in response to altered environmental conditions such as specific nutrient limitations, the presence of antibacterial factors, and growth of the cells on hard surfaces such as rabbit bone or plastic catheters. Some of these specific cell wall alterations are also seen when staphylococcal cells are exposed, in vitro or in vivo, to antibiotics such as clindamycin, but we emphasize that growth in tissue alone is sufficient for their induction.


2014 ◽  
Vol 104 (4) ◽  
pp. 347-356 ◽  
Author(s):  
T. Veloukas ◽  
P. Kalogeropoulou ◽  
A. N. Markoglou ◽  
G. S. Karaoglanidis

Respiration inhibitors such as the succinate dehydrogenase inhibitors (SDHIs) and the quinone outside inhibitors (QoIs) are fungicide classes with increasing relevance in gray mold control. However, recent studies have shown that dual resistance to both fungicide classes is a common trait in Botrytis cinerea populations from several hosts throughout the world. Resistance of B. cinerea to SDHIs is associated with several mutations in the sdhB, sdhC, and sdhD genes, while resistance to QoIs, in most cases, is associated with the G143A mutation in the cytb gene. The objective of the current study was to investigate the fitness and the competitive ability of B. cinerea field strains possessing one of the H272Y/R/L, N230I, or P225F sdhB substitutions and the G143A mutation of cytb. Fitness parameters measured were (i) mycelial growth and conidia germination in vitro, (ii) aggressiveness and sporulation capacity in vivo, (iii) sclerotia production in vitro and sclerotia viability under different storage conditions, and (iv) sensitivity to oxidative stress imposed by diquat treatments. The competitive ability of the resistant isolates was measured in the absence and presence of the SDHI fungicides boscalid and fluopyram selection pressure. The measurements of individual fitness components showed that the H272R/G143A isolates had the lower differences compared with the sensitive isolates. In contrast, the groups of H272Y/L/G143A, N230I/G143A, and P225F/G143A isolates showed reduced fitness values compared with the sensitive isolates. Isolates possessing only the cytb G143A substitution did not show any fitness cost. The competition experiments showed that, in the absence of fungicide selection pressure, after four disease cycles on apple fruit, the sensitive isolates dominated in the population in all the mixtures tested. In contrast, when the competition experiment was conducted under the selection pressure of boscalid, a gradual decrease in the frequency of sensitive isolates was observed, whereas the frequency of H272L and P225F isolates was increased. When the competition experiment was conducted in the presence of fluopyram, the sensitive isolates were eliminated even after the first disease cycle and the P225F mutants dominated in the population. Such results suggest that the sdhB mutations may have adverse effects on the mutants. The observed dominance of sensitive isolates in the competition experiments conducted in the absence of fungicides suggest that the application of SDHIs in alternation schemes may delay the selection or reduce the frequency of SDHI-resistant mutants.


2021 ◽  
Vol 13 (2) ◽  
pp. 23
Author(s):  
L. M. Gomez-Osorio ◽  
Hwa Gyun Oh ◽  
Jung Jin Lee

In vitro assays were carried out to investigate the solubilization of cell walls and generation of mannan oligosaccharides of a b-mannanase-containing commercial product on SBM. Using commercial dosages of the b-mannanase (500 g per ton of feed) cell wall degradation of mannan in SBM cell walls was visualized and an increase in reducing ends (0.12±0.02 mg/mL) and the generation of mannan oligosaccharides of degree of polymerization 2 and 4 (22.9±3.2 mg/L and 398.8±25.4 mg/L) were also measured using HPLC. Mannan, which is H-bonded to cellulose and xyloglucan, was solubilized using a single monocomponent enzyme, allowing for visualization of the disintegration of the entire SBM cell wall structure. This work is the first of its kind using strictly commercial dosage levels of enzyme for evaluating efficacy of the same microscopically. These data confirm the hypothesis that there most likely is a need for only a single relevant NSP enzyme targeting its specific substrate, independent of the concentration of the latter within the complex polysaccharide matrix in the plant cell wall to experience the beneficial effects of the enzyme both in vitro and in vivo. An analogy to compare our data would be destruction of the foundation (mannan) of a building or a bridge (soybean cell wall) which would inevitably lead to dismantling or demolition the entire building or bridge.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2019 ◽  
Vol 16 (6) ◽  
pp. 696-710
Author(s):  
Mahmoud Balbaa ◽  
Doaa Awad ◽  
Ahmad Abd Elaal ◽  
Shimaa Mahsoub ◽  
Mayssaa Moharram ◽  
...  

Background: ,2,3-Triazoles and imidazoles are important five-membered heterocyclic scaffolds due to their extensive biological activities. These products have been an area of growing interest to many researchers around the world because of their enormous pharmaceutical scope. Methods: The in vivo and in vitro enzyme inhibition of some thioglycosides encompassing 1,2,4- triazole N1, N2, and N3 and/or imidazole moieties N4, N5, and N6. The effect on the antioxidant enzymes (superoxide dismutase, glutathione S-transferase, glutathione peroxidase and catalase) was investigated as well as their effect on α-glucosidase and β-glucuronidase. Molecular docking studies were carried out to investigate the mode of the binding interaction of the compounds with α- glucosidase and β -glucuronidase. In addition, quantitative structure-activity relationship (QSAR) investigation was applied to find out the correlation between toxicity and physicochemical properties. Results: The decrease of the antioxidant status was revealed by the in vivo effect of the tested compounds. Furthermore, the in vivo and in vitro inhibitory effects of the tested compounds were clearly pronounced on α-glucosidase, but not β-glucuronidase. The IC50 and Ki values revealed that the thioglycoside - based 1,2,4-triazole N3 possesses a high inhibitory action. In addition, the in vitro studies demonstrated that the whole tested 1,2,4-triazole are potent inhibitors with a Ki magnitude of 10-6 and exhibited a competitive type inhibition. On the other hand, the thioglycosides - based imidazole ring showed an antioxidant activity and exerted a slight in vivo stimulation of α-glucosidase and β- glucuronidase. Molecular docking proved that the compounds exhibited binding affinity with the active sites of α -glucosidase and β-glucuronidase (docking score ranged from -2.320 to -4.370 kcal/mol). Furthermore, QSAR study revealed that the HBD and RB were found to have an overall significant correlation with the toxicity. Conclusion: These data suggest that the inhibition of α-glucosidase is accompanied by an oxidative stress action.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Stéphane Perrier ◽  
Eléonore Moreau ◽  
Caroline Deshayes ◽  
Marine El-Adouzi ◽  
Delphine Goven ◽  
...  

AbstractIn the malaria vector Anopheles gambiae, two point mutations in the acetylcholinesterase (ace-1R) and the sodium channel (kdrR) genes confer resistance to organophosphate/carbamate and pyrethroid insecticides, respectively. The mechanisms of compensation that recover the functional alterations associated with these mutations and their role in the modulation of insecticide efficacy are unknown. Using multidisciplinary approaches adapted to neurons isolated from resistant Anopheles gambiae AcerKis and KdrKis strains together with larval bioassays, we demonstrate that nAChRs, and the intracellular calcium concentration represent the key components of an adaptation strategy ensuring neuronal functions maintenance. In AcerKis neurons, the increased effect of acetylcholine related to the reduced acetylcholinesterase activity is compensated by expressing higher density of nAChRs permeable to calcium. In KdrKis neurons, changes in the biophysical properties of the L1014F mutant sodium channel, leading to enhance overlap between activation and inactivation relationships, diminish the resting membrane potential and reduce the fraction of calcium channels available involved in acetylcholine release. Together with the lower intracellular basal calcium concentration observed, these factors increase nAChRs sensitivity to maintain the effect of low concentration of acetylcholine. These results explain the opposite effects of the insecticide clothianidin observed in AcerKis and KdrKis neurons in vitro and in vivo.


2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


Sign in / Sign up

Export Citation Format

Share Document