scholarly journals Inheritance and Linkage Studies in Peach

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 809B-809
Author(s):  
Dennis J. Werner ◽  
Michael A. Creller

Inheritance of male sterility in peach [Prunus persica (L.) Batsch] Plant Introduction (PI) 240928 was investigated. Crosses of PI 240928 with five wild-type clones yielded all male-sterile offspring, indicating dominant gene action. Inheritance of the sweet kernel trait in peach was studied in F1 and F2 progeny of `Summer Beaut' nectarine (sweet kernel) × `Biscoe' peach (bitter kernel). All four F1 progeny were bitter. Segregation in an F2 of 80 progeny fit a ratio of 3 bitter: 1 sweet. We propose that the gene controlling the sweet kernel trait be designated sk. Sweet kernel (sk) was linked to nectarine (g) at a map distance of 17 cM. Evaluation of the peach PI collection showed that PI 129678 (`Stanwick' nectarine) and PI 34685 (`Quetta' nectarine) were the only clones with a sweet kernel. Crosses between `Davie II' and `Honeyglo' nectarine (dwdw) confirmed that the gene conferring the dwarf phenotype in progeny of `Davie II' is non-allelic to dw.

1997 ◽  
Vol 122 (2) ◽  
pp. 215-217 ◽  
Author(s):  
Dennis J. Werner ◽  
Michael A. Creller

Inheritance of the sweet kernel trait was studied in F1 and F2 families generated by crossing `Summer Beaut' nectarine (sweet kernel) with `Ellerbe' and `Biscoe' peach. F1 plants showed bitter kernel. Segregation in the F2 fit a 3 bitter : 1 sweet phenotypic ratio, suggesting that sweet kernel is controlled by a single recessive gene, for which the symbol sk is proposed. Sweet kernel (sk) was linked to nectarine (g) at a map distance of 12 cM. Seed bitterness phenotype is controlled by the genotype of the maternal tree and not the genotype of the individual embryo. Inheritance of male sterility derived from plant introduction (PI) 240928 and allelism of male sterile genes found in `Chinese Cling' and `White Glory' were investigated. Analysis of F1, F1 open-pollinated, and BC1 families derived from crossing PI 240928 with six different wild-type cultivars showed that male sterility in PI 240928 is controlled by cytoplasmic factors. Allelism studies showed that the male-sterile gene found in `White Glory' is not allelic to ps found in `Chinese Cling', and hence is designated ps2.


2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


1976 ◽  
Vol 27 (2) ◽  
pp. 143-159 ◽  
Author(s):  
Stephen F. Ng

SUMMARYThe basis of inheritance of the extra cytoproct (XP) character inParamecium tetraurelia, stock d4-154, is shown to be nuclear and probably a single dominant gene,Ec, with reduced penetrance in heterozygotes. When the mutant gene is replaced by its wild-type allele, loss of the XP phenotype in some lines of descent occurs before 15 cell generations, but in more than half of the lines this occurs after 15–120 or more cell generations. The possibility is considered that these extremely long and variable ‘lags’ may be due to extranuclear (cortical) inheritance of cortical changes initially produced by gene action.


2004 ◽  
Vol 129 (6) ◽  
pp. 802-810 ◽  
Author(s):  
Wesley E. Kloos ◽  
Carol G. George ◽  
Laurie K. Sorge

Cultivated gerbera daisies [Gerbera hybrida (G. jamesonii Bolus ex Adlam × G. viridifolia Schultz-Bip)] have several different flower types. They include single and crested cultivars that have normal florets with elliptical (ligulate) outer corolla lips and spider cultivars that have florets with laciniated (split) outer corolla lips appearing as several pointed lobes. The objective of this investigation was to determine the mode of inheritance of the major flower types of gerberas in the North Carolina State Univ. collection. The collection contained parents and four generations of progeny representing a wide range of single and crested cultivars and some spider cultivars. Genotypes of parents used in crosses were determined by testcrosses to single-flowered, ligulate floret cultivars similar in phenotype to the wild, parental gerbera species. Testcrosses indicated that the wild type was recessive to the crested and spider flower types and given the genotype crcrspsp. For each of the types, a series of crosses were made to produce PA, PB, F1, F2, BC1A, and BC1B progeny. Allelism was tested operationally by crossing genotypes in all possible combinations and observing single-gene-pair ratios. Linkage relationships among the crested and spider loci were tested using dihybrid crosses and testcrosses. Phenotypic segregation ratios suggested the presence of two dominant alleles, Crd and Cr, determining the enlarged disk and trans floret, male-sterile and enlarged trans floret, male-fertile crested types, respectively, and an unlinked dominant gene, Sp, determining the spider type. Dominance appeared to be incomplete due to the reduction of trans floret length in most Crdcr and Crcr heterozygotes compared to crested homozygotes and the appearance of the quasi-spider type (spider trans and disk florets and ligulate and/or slightly notched ray florets) among certain crested Spsp heterozygotes.


2015 ◽  
Vol 13 (1) ◽  
pp. 207-215
Author(s):  
MJ Hasan ◽  
U Kulsum ◽  
NE Elahi ◽  
AKM Shamsuddin ◽  
MM Rahman

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR827R, BR168R, BR6723-1-1-2R, M.H.63R, M.H.77R, Gui99R, IR40750R, IR64R, AjayaR and IR44675R and one male sterile line II32A with ID (Indonesian paddy type) sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving II32A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.SAARC J. Agri., 13(1): 207-215 (2015)


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 383-391 ◽  
Author(s):  
Hoang V Tang ◽  
Ruying Chang ◽  
Daryl R Pring

Abstract Defective nuclear-cytoplasmic interactions leading to aberrant microgametogenesis in sorghum carrying the IS1112C male-sterile cytoplasm occur very late in pollen maturation. Amelioration of this condition, the restoration of pollen viability, involves a novel two-gene gametophytic system, wherein genes designated Rf3 and Rf4 are required for viability of individual gametes. Rf3 is tightly linked to, or represents, a single gene that regulates a transcript processing activity that cleaves transcriptsof orf107, a chimeric mitochondrial open reading frame specific to IS1112C. The mitochondrial gene urf 209 is also subject to nucleus-specific enhanced transcript processing, 5′ to the gene, conferred by a single dominant gene designated Mmt1. Examinations of transcript patterns in F2 and two backcross populations indicated cosegregation of the augmented orf107 and urf209 processing activities in IS1112C. Several sorghum lines that do not restore fertility or confer orf107 transcript processing do exhibit urf209 transcript processing, indicating that the activities are distinguishable. We conclude that the nuclear gene(s) conferring enhanced orf107 and urf209 processing activities are tightly linked in IS1112C. Alternatively, the similarity in apparent regulatory action of the genes may indicate allelic differences wherein the IS1112C Rf3 allele may differ from alleles of maintainer lines by the capability to regulate both orf107 and urf209 processing activities.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ivica Stancic ◽  
Jelica Zivic ◽  
Sasa Petrovic ◽  
Desimir Knezevic

This paper analyzes the impact of genes and proportional contribution of parental genotypes on the inheritance of root yield and sugar content in diploid hybrids of sugar beet. The survey included two diploid male-sterile monogerm lines and three single (SC) male-sterile hybrids as maternal components, while three multigerm diploids were used as pollinators. The partitioning of genotypic variance into additive and dominant components was performed by half sibling (HS) and full sibling (FS) covariance. The proportional contribution of individual components of crossbreeding (lines, testers, and interactions) was exhibited in the expression of certain characteristics of F1generation. Genotypic variance components showed a significant effect of nonadditive gene action (dominance) in the inheritance of root yield and sugar content, while the additive effect of genes was less significant. Maternal components had a greater proportional contribution to root yield, while lines, pollinators, and their interactions had an equal contribution to sugar content.


Sign in / Sign up

Export Citation Format

Share Document