scholarly journals Peach and Nectarine Fruit Softening Following Aminoethoxyvinylglycine Sprays and Dips

HortScience ◽  
1997 ◽  
Vol 32 (1) ◽  
pp. 86-88 ◽  
Author(s):  
Ross E. Byers

AVG sprays applied to `Redhaven' peach (Prunus persica L. Batsch) trees 53, 72, 80, 87, or 94 days after full bloom (AFB) slightly delayed the first harvest date. Applications at 53 or 94 days AFB slightly delayed cumulative second and third harvests. The fourth (final) harvest was not delayed by any AVG spray. Firm commercial-harvest peach and nectarine fruit submerged for 60 s in AVG solutions softened more slowly than the controls when kept at room temperature (≈24 °C) for 3 to 12 days. AVG-treated fruit dipped in ethephon after 4 days showed an increased rate of softening compared to fruits treated only with AVG. Fruit submerged in AVG solutions and stored at 1.5 or 4.5 °C for 12 to 18 days did not differ in firmness from the controls upon removal from cold storage but sometimes softened more slowly after storage. Ethylene evolution from AVG-dipped fruit was not measureable even after it was kept at room temperature for 12 days. Chemicals used: Aminoethoxyvinylglycine hydrochloride (AVG); 2-chloroethylphosphonic acid (ethephon).

1999 ◽  
Vol 9 (1) ◽  
pp. 65-67 ◽  
Author(s):  
Robert C. Ebel ◽  
Arnold Caylor ◽  
Jim Pitts ◽  
Bobby Boozer

Ethrel [(2-chloroethyl)phosphonic acid] was applied at 0, 100 or 200 ppm (mg·L-1) for 3 years to the early maturing `Empress' peach [Prunus persica (L.) Batsch] to determine if bloom delay by Ethrel reduces fruit weight at harvest. Trees were hand thinned at 0 or 3 weeks after full bloom to equalize cropload across Ethrel treatments and to determine if any reduction in fruit weight by Ethrel can be compensated by harvest with earlier thinning. Ethrel at 200 ppm (mg·L-1) delayed bloom by 3, 0, and 7 days in 1994, 1996 and 1997, respectively. Despite bloom delay, Ethrel did not delay harvest or reduce fruit weight. Thus, earlier hand thinning was not necessary. Ethrel did not affect blossom density and was not phytotoxic to vegetative or reproductive organs. These results indicate that even with the shorter fruit growth period of early maturing peach cultivars such as `Empress', there is sufficient time for fruit growth to recover on Ethrel treated trees so that fruit weight at harvest is not reduced.


1991 ◽  
Vol 116 (2) ◽  
pp. 274-279 ◽  
Author(s):  
P. Tonutti ◽  
P. Casson ◽  
A. Ramina

Ethylene evolution and ACC levels were determined throughout the growth and development of peach fruit (Prunus persica L. Batsch cv. Redhaven). In the four stages of growth (I, II, III, IV), as indicated by weekly monitoring of fresh (FW) and dry (DW) weight accumulation, ethylene biosynthesis in whole fruit decreased during FWI and remained almost undetectable during FWII and FWIII. In pericarp disks, ethylene evolution followed the same trend, although a peak at 78 days after full bloom and a slight increase before the onset of the climacteric were observed. The high rates of ethylene evolution were associated with a concurrent increase in ACC content. Enhancement of ACC synthase and ethylene-forming enzyme (EFE) activities was responsible for the peak of ethylene evolution detected before the beginning of FWIII and DWIII. At the climacteric, which occurred at the FWIII-FWIV transition, sequential events were observed in different fruit tissues. An increase of ethylene production in the mesocarp preceded the onset of the climacteric rise in whole fruit. The high amount of ethylene detected during the climacteric appeared to be related to increased EFE activity in the epicarp. Chemical name used: 1-aminocyclopropane-1-carboxylic acid (ACC).


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 591a-591
Author(s):  
Mark A. Ritenour ◽  
Carlos H. Crisosto ◽  
Guiwen W. Cheng ◽  
David T. Garner

The development of ethylene preconditioning treatments for kiwifruit have made it possible to deliver ripe kiwifruit to consumers early in the season. We report on how maturity and length of storage time affect the ripening responses of kiwifruit [Actinidia deliciosa (A Chev) Liang et Ferguson cv Hayward] preconditioned with 100 ppm ethylene at 0°C for 24 hours and ripened for 10 days at 20°C. Kiwifruit freshly harvested at weekly intervals continued to soften faster in response to ethylene preconditioning compared to air controls for at least 5 weeks following commercial harvest. In contrast, kiwifruit commercially harvested and stored at 0°C for more than 2 weeks no longer responded to low-temperature ethylene preconditioning. However, kiwifruit stored more that 5 weeks were still responsive to exogenous ethylene and softened faster when exposed to continuous ethylene at either 0 or 20°C. Kiwifruit had relatively high respiration rates 1 days after transferring from 0 to 20°C, which quickly dropped to base levels within 1 day. Fruit stored >1 week at 0°C always had higher initial respiration than freshly harvested fruit on transfer to 20°C, and ethylene preconditioning increased initial respiration of freshly harvested fruit but had less of an effect on initial respiration of stored fruit. Plotting firmness against individual fruit's respiration and ethylene production revealed a distinct rise in respiration and ethylene production only after fruit softened to <6.5 N. Preconditioning fruit at 0°C did not significantly alter the timing of the climacteric respiration or ethylene peaks.


2015 ◽  
Vol 110 ◽  
pp. 77-85 ◽  
Author(s):  
Custódia M.L. Gago ◽  
Adriana C. Guerreiro ◽  
Graça Miguel ◽  
Thomas Panagopoulos ◽  
Claudia Sánchez ◽  
...  

2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


2005 ◽  
Vol 95 (12) ◽  
pp. 1462-1471 ◽  
Author(s):  
D. W. Cullen ◽  
I. K. Toth ◽  
Y. Pitkin ◽  
N. Boonham ◽  
K. Walsh ◽  
...  

Specific and sensitive quantitative diagnostics, based on real-time (TaqMan) polymerase chain reaction (PCR) and PCR enzyme-linked immunosorbent assay, were developed to detect dry-rot-causing Fusarium spp. (F. avenaceum, F. coeruleum, F. culmorum, and F. sulphureum). Each assay detected Fusarium spp. on potato seed stocks with equal efficiency. Four potato stocks, sampled over two seed generations from Scottish stores, were contaminated with F. avenaceum, F. sulphureum, F. culmorum, F. coeruleum or a combination of species, and there was a general trend towards increased Fusarium spp. contamination in the second generation of seed sampled. F. sulphureum and F. coeruleum caused significantly (P < 0.05) more disease in storage than the other species when disease-free tubers of potato cvs. Spunta and Morene were inoculated at a range of inoculum concentrations (0, 104, 105, and 106 conidia/ml). Increased DNA levels were correlated with increased disease severity between 8 and 12 weeks of storage. The threshold inoculum levels resulting in significant disease development on both cultivars were estimated to be 104 conidia/ml for F. sulphureum and 105 conidia/ml for F. coeruleum. To study the effect of soil infestation and harvest date on disease incidence, seed tubers of cvs. Morene and Spunta were planted in a field plot artificially infested with the four Fusarium spp. F. culmorum and F. sulphureum were detected in soil taken from these plots at harvest, and F. sulphureum DNA levels increased significantly (P < 0.05) at the final harvest. All four Fusarium spp. were detected in progeny tubers. There was a trend toward higher levels of F. culmorum detected in progeny tubers at the earliest harvest date, and higher levels of F. sulphureum at the final harvest. The use of diagnostic assays to detect fungal storage rot pathogens and implications for disease control strategies are discussed.


2017 ◽  
Vol 142 (4) ◽  
pp. 246-259 ◽  
Author(s):  
Yunqing Zhu ◽  
Wenfang Zeng ◽  
Xiaobei Wang ◽  
Lei Pan ◽  
Liang Niu ◽  
...  

Pectins are synthesized and secreted to the cell wall as highly methyl-esterified polymers and demethyl-esterified by pectin methylesterases (PMEs), which are regulated by pectin methylesterase inhibitors (PMEIs). PMEs and PMEIs are involved in pectin degradation during fruit softening; however, the roles of the PME and PMEI gene families during fruit softening remain unclear. Here, 71 PME and 30 PMEI genes were identified in the peach (Prunus persica) genome and shown to be unevenly distributed on all eight chromosomes. The 71 PME genes comprised 36 Type-1 PMEs and 35 Type-2 PMEs. Transcriptome analysis showed that 11 PME and 15 PMEI genes were expressed during fruit ripening in melting flesh (MF) and stony-hard (SH) peaches. Three PME and five PMEI genes were expressed at higher levels in MF than in SH fruit and exhibited softening-associated expression patterns. Upstream regulatory cis elements of these genes related to hormone response, especially naphthaleneacetic acid and ethylene, were investigated. One PME (Prupe.7G192800) and two PMEIs (Prupe.1G114500 and Prupe.2G279800), and their promoters were identified as potential targets for future studies on the biochemical metabolism and regulation of fruit ripening. The comprehensive data generated in this study will improve our understanding of the PME and PMEI gene families in peach. However, further detailed investigation is necessary to elucidate the biochemical function and regulation mechanism of the PME and PMEI genes during peach fruit ripening.


1991 ◽  
Vol 116 (2) ◽  
pp. 195-200 ◽  
Author(s):  
D.C. Elfving ◽  
E.C. Lougheed ◽  
R.A. Cline

A midsummer foliar daminozide (DZ) application (750 mg a.i./liter) to `Macspur McIntosh'/M.7 apple trees (Malus domestics Borkh.) reduced preharvest drop and retarded flesh firmness loss and starch hydrolysis when tested at harvest; DZ also reduced fruit ethylene production at harvest and after 19 weeks of storage at 0.5C. Root pruning at full bloom (May) resulted in increased soluble solids concentration (SSC) and firmer flesh and less starch hydrolysis at harvest, but not consistently each year. Full-bloom root pruning reduced the incidence of stem-cavity browning and brown core, but again not each year. Full-bloom root pruning did not influence ethylene evolution at harvest but did reduce post-storage ethylene evolution in two of three seasons. Full-bloom root pruning generally was less effective than DZ in altering fruit behavior, while root pruning later than full bloom had virtually no effect. Trunk scoring or ringing increased SSC and retarded loss of flesh firmness before harvest and following storage, but had little effect on starch hydrolysis. Scoring or ringing decreased incidence of some disorders and reduced post-storage ethylene evolution, although these treatments had little effect on ethylene production at harvest. Trunk scoring influenced some fruit characteristics more strongly than DZ. Fruit size was not affected by any treatment in any year. Chemical name used: butanedioic acid mono (2,2 -dimethylhydrazide) (daminozide).


2019 ◽  
pp. 57-68

“Solo” papaya fruits were harvested in October, 2016 & 2017 seasons from a commercial orchard located in Ismailia Governorate, Egypt. Papaya fruits were harvested at three maturity stages: 25% yellow (stage 1), 50% yellow (stage 2) and 100% yellow (stage 3) and evaluated during storage at ambient temperature (20°C ± 2) for 4 days + at 80- 85% RH or during cold storage at 6°C + 90- 95% RH for 20 days. Papaya fruits softened very rapidly at room temperature after harvest and had 4 days shelf life. However, the fruit can be stored for 20 days at 6°C with little changes in firmness and the fruit apparently progressed in normal ripening upon removal to ambient temperature (20°C) for 3 days. All colour values (a*, L* and C*) were linearly increased during cold storage. Conversely, as a result of colour change from green to orange-red, h° values decreased. Soluble solids content was not affected during ripening at 20°C and remained steady. Fruit harvested at stage 2 and stored at 6°C for 20 days following 3 days at 20°C had superior score for sensorial evaluation.


Author(s):  
Jakellinye Miranda ◽  
Suélen Braga de Andrade, Andressa Vighi Schiavon ◽  
Pedro Luis Panisson Kaltbach Lemos ◽  
Cláudia Simone Madruga Lima ◽  
Marcelo Barbosa Malgarim

Peach is a climacteric highly-perishable fruit whose post-harvest preservation relies largely on cold storage. The combination of the last with other technologies allows to extend the shelf life of this product. One alternative is the utilization of salicylic acid, a natural compound involved in many physiological phenomena such as resistance against diseases and ripening. Considering these facts, the objective of the present work was to evaluate the effect of pre-harvest application of salicylic acid solutions on the quality of ‘Chimarrita’ peaches during post-harvest cold storage. The experiment was conducted at the Federal University of Pelotas/RS, in the campus of Capão do Leão/RS - Brazil. The application of salicylic acid solutions was performed by direct pulverization on the fruits, 30 days prior to harvest. The concentrations were: 0,0 (control); 1,0; 1,5; and 2,0 mM. After harvest, the fruits were stored in a cold chamber at 1,0 ± 0,5°C and 85-90% RH, for 30 days. The analyses were performed at the following cold storage periods (plus 2 days at room temperature of 20°C to all treatments, in order to simulate commercialization conditions): 10 (+2) days; 20 (+2) days; e 30 (+2) days. The variables evaluated were: mass loss (%); flesh firmness (N); DA index; color (L, a*, b* and hue angle); wooliness incidence (%); rot incidence (%); total soluble solids (°Brix); pH; titrable acidity (% of organic acids); and ratio. The salicylic acid doses and/or the cold storage periods had significant effects on all the evaluated parameters. For most of the parameters analyzed, the intermediate dosis of 1mM (and also 1,5mM) of salicilic acid showed the most promising results. Therefore, the application of salicylic acid solutions 30 days prior to harvest is a technique which can be combined to cold storage in order to shift the quality and the shelf-life of ‘Chimarrita’ peaches.


Sign in / Sign up

Export Citation Format

Share Document