scholarly journals The Influence of Vegetation on UHIs, MUHIs, and Microclimate of Selected Southern Cities

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 509A-509
Author(s):  
Derald A. Harp ◽  
Edward L. McWilliams

Urban areas have average annual temperatures 2–3°C warmer than surrounding rural areas, with daily differences of 5–6°C common. A suggested reason for this temperature difference is the extensive use of concrete, asphalt, and other building materials in the urban environment. Vegetation can moderate these temperatures by intercepting incoming radiation. The influence of vegetation patterns on the magnitude of urban and micro-urban “heat islands” (UHI and MUHI, respectively) is compared for several cities including Houston, Austin, College Station, and Ft. Worth, Texas; Huntsville, Ala.; and Gainesville, Fla. Temperatures for all cities studied were greatest in the built-up areas and dropped off in suburban areas and adjacent rural areas. In Houston, surrounding rice fields were 3–5°C cooler than urban areas. Heavily built-up areas of Austin were 2–4°C warmer than parks and fields outside of the city. In all of the cities, large parks were typically 2–3°C cooler than adjacent built-up areas. Large shopping malls varied in nocturnal winter and summer temperature, with winter temperatures near door openings 2–3°C warmer, and summer daytime temperatures as much as 17°C cooler beneath trees. This effect seemed to persist at the microclimatic scale. Areas beneath evergreen trees and shrubs were warmer in the winter than surrounding grass covered areas. Video thermography indicated that the lower surfaces of limbs in deciduous trees were warmer than the upper surfaces. Overall, vegetation played a significant role, both at the local and microscale, in temperature moderation.

2019 ◽  
Vol 91 ◽  
pp. 05005 ◽  
Author(s):  
Minh Tuan Le ◽  
Nguyen Anh Quan Tran

The cumulative heating in some urban areas due to the urban growth and its types of industry, energy and transport, is the effect of urban heat island (UHI). It is recognized as one of the characteristics of the urban climate. The temperature increase caused by the effect (UHI) affects the energy flow in urban ecological systems, creates an unusual urban climate. By studying the effects of climate factors, local building materials to optimize energy efficiency, urban landscape, UHI phenomenon could be significantly moderated.


2020 ◽  
Author(s):  
Sarah Safieddine ◽  
Maya George ◽  
Cathy Clerbaux ◽  
Ana Paracho ◽  
Anne Boynard ◽  
...  

<p>IASI is a versatile mission, allowing the measurement of both meteorological parameters such as temperature and atmospheric composition for infrared absorbing species. With its long observation record and frequent overpasses, IASI is able to follow changes at different spatial scales. We studied IASI’s capability to track the anthropogenic signature associated with large cities, both in terms of temperature fingerprint (urban heat islands) and carbon monoxide (CO) content, a good tracer of human activity (transport, heating, and industrial activities). For this study we averaged the IASI data available since the launch of the first IASI, in order to increase the signal to noise, and allow discriminating the city from its surroundings. For skin temperatures we show that some cities experience much warmer temperatures than nearby rural areas, with day and night differences, whereas other urban areas appear as cold urban islands when surrounded by deserts Examples will be shown and compare with MODIS observations. For CO emitted by human activities, we identified some cities that stand out from their background, and were able to compare their CO associated signatures with measurements provided by other available spaceborne instruments such as Mopitt and TROPOMI.</p>


2021 ◽  
Author(s):  
Sebastian Schlögl ◽  
Nico Bader ◽  
Julien Gérard Anet ◽  
Martin Frey ◽  
Curdin Spirig ◽  
...  

<p>Today, more than half of the world’s population lives in urban areas and the proportion is projected to increase further in the near future. The increased number of heatwaves worldwide caused by the anthropogenic climate change may lead to heat stress and significant economic and ecological damages. Therefore, the growth of urban areas in combination with climate change can increase future mortality rates in cities, given that cities are more vulnerable to heatwaves due to the greater heat storage capacity of artificial surfaces towards higher longwave radiation fluxes.</p><p>To detect urban heat islands and resolve the micro-scale air temperature field in an urban environment, a low-cost air temperature network, including 450 sensors, was installed in the Swiss cities of Zurich and Basel in 2019 and 2020. These air temperature data, complemented with further official measurement stations, force a statistical air temperature downscaling model for urban environments, which is used operationally to calculate hourly micro-scale air temperatures in 10 m horizontal resolution. In addition to air temperature measurements from the low-cost sensor network, the model is further forced by albedo, NDVI, and NDBI values generated from the polar-orbiting satellite Sentinel-2, land surface temperatures estimated from Landsat-8, and high-resolution digital surface and elevation models.</p><p>Urban heat islands (UHI) are processed averaging hourly air temperatures over an entire year for each grid point, and comparing this average to the overall average in rural areas. UHI effects can then be correlated to high-resolution local climate zone maps and other local factors.</p><p>Between 60-80 % of the urban area is modeled with an accuracy below 1 K for an hourly time step indicating that the approach may work well in different cities. However, the outcome may depend on the complexity of the cities. The model error decreases rapidly by increasing the number of spatially distributed sensor data used to train the model, from 0 to 70 sensors, and then plateaus with further increases. An accuracy below 1 K can be expected for more than 50 air temperature measurements within the investigated cities and the surrounding rural areas. </p><p>A strong statistical air temperature model coupled with atmospheric boundary layer models (e.g. PALM-4U, MUKLIMO, FITNAH) will aid to generate highly resolved urban heat island prediction maps that help decision-makers to identify local heat islands easier. This will ensure that financial resources will be invested as efficiently as possible in mitigation actions.</p>


2013 ◽  
Vol 52 (9) ◽  
pp. 2051-2064 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid

AbstractCities are well known to be hotter than the rural areas that surround them; this phenomenon is called the urban heat island. Heat waves are excessively hot periods during which the air temperatures of both urban and rural areas increase significantly. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses indicates synergies between urban heat islands and heat waves. That is, not only do heat waves increase the ambient temperatures, but they also intensify the difference between urban and rural temperatures. As a result, the added heat stress in cities will be even higher than the sum of the background urban heat island effect and the heat wave effect. Results presented here also attribute this added impact of heat waves on urban areas to the lack of surface moisture in urban areas and the low wind speed associated with heat waves. Given that heat waves are projected to become more frequent and that urban populations are substantially increasing, these findings underline the serious heat-related health risks facing urban residents in the twenty-first century. Adaptation and mitigation strategies will require joint efforts to reinvent the city, allowing for more green spaces and lesser disruption of the natural water cycle.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 792 ◽  
Author(s):  
Dariusz Suszanowicz ◽  
Alicja Kolasa Więcek

This study presents the results of a review of publications conducted by researchers in a variety of climates on the implementation of ‘green roofs’ and their impact on the urban environment. Features of green roofs in urban areas have been characterized by a particular emphasis on: Filtration of air pollutants and oxygen production, reduction of rainwater volume discharged from roof surfaces, reduction of so-called ‘urban heat islands’, as well as improvements to roof surface insulation (including noise reduction properties). The review of the publications confirmed the necessity to conduct research to determine the coefficients of the impact of green roofs on the environment in the city centers of Central and Eastern Europe. The results presented by different authors (most often based on a single case study) differ significantly from each other, which does not allow us to choose universal coefficients for all the parameters of the green roof’s impact on the environment. The work also includes analysis of structural recommendations for the future model green roof study, which will enable pilot research into the influence of green roofs on the environment in urban agglomerations and proposes different kinds of plants for different kinds of roofs, respectively.


2021 ◽  
Vol 13 (16) ◽  
pp. 3177
Author(s):  
Talha Hassan ◽  
Jiahua Zhang ◽  
Foyez Ahmed Prodhan ◽  
Til Prasad Pangali Sharma ◽  
Barjeece Bashir

Urbanization is an increasing phenomenon around the world, causing many adverse effects in urban areas. Urban heat island is are of the most well-known phenomena. In the present study, surface urban heat islands (SUHI) were studied for seven megacities of the South Asian countries from 2000–2019. The urban thermal environment and relationship between land surface temperature (LST), land use landcover (LULC) and vegetation were examined. The connection was explored with remote-sensing indices such as urban thermal field variance (UTFVI), surface urban heat island intensity (SUHII) and normal difference vegetation index (NDVI). LULC maps are classified using a CART machine learning classifier, and an accuracy table was generated. The LULC change matrix shows that the vegetated areas of all the cities decreased with an increase in the urban areas during the 20 years. The average LST in the rural areas is increasing compared to the urban core, and the difference is in the range of 1–2 (°C). The SUHII linear trend is increasing in Delhi, Karachi, Kathmandu, and Thimphu, while decreasing in Colombo, Dhaka, and Kabul from 2000–2019. UTFVI has shown the poor ecological conditions in all urban buffers due to high LST and urban infrastructures. In addition, a strong negative correlation between LST and NDVI can be seen in a range of −0.1 to −0.6.


2016 ◽  
Vol 9 (2) ◽  
pp. 614 ◽  
Author(s):  
Elânia Daniele Silva Araújo

A intensa urbanização causa diversos problemas de natureza ambiental, climática e social. O crescimento não planejado da população urbana e a remoção da vegetação são fatores que intensificam estes problemas. As temperaturas na cidade são significativamente mais quentes do que as suas zonas rurais circundantes devido às atividades humanas. As intensas mudanças espaciais em áreas urbanas, promovem significativo aumento na temperatura, causando o chamado efeito de Ilha de Calor Urbano (ICU). Campina Grande é uma cidade de tamanho médio que experimentou um crescimento desordenado, desde o tempo do comércio de algodão e, como qualquer cidade de grande ou médio porte, sofre alterações em seu espaço. Dessa forma, este estudo teve por objetivo analisar a variabilidade espaço-temporal da temperatura da superfície (Ts) e detectar ICU, através de técnicas de sensoriamento remoto. Para o efeito, foram utilizadas imagens dos satélites Landsat 5 e 8, dos anos de 1995, 2007 e 2014. Aumentos da Ts foram bem evidentes e foram detectadas duas ICU. Campina Grande mostra um padrão de tendência: o crescimento urbano não planejado é responsável por mudanças no ambiente físico e na forma e estrutura espacial da cidade, o que se reflete sobre o microclima e, em última análise, na qualidade de vida das pessoas.   ABSTRACT The intense urbanization causes several problems of environmental, climate and social nature. The unplanned growth of urban population and the vegetation removal are factors that deepen these problems. Temperatures in the city are significantly warmer than its surrounding rural areas due to human activities. Large spatial changes in urban areas promote significant increase in temperature, causing the so-called Urban Heat Island effect (UHI). Campina Grande is a medium-sized town that experienced an uncontrolled growth since the time of the cotton trade and like any large or medium-sized city, undergoes changes in its space. Therefore, this study aimed to analyze surface temperature spatial and temporal variability and to detect potential UHI, through remote sensing techniques. Spectral images from Landsat 5 and 8 satellites were used. Using images from years 1995, 2007 and 2014, considerable increases in temperature were identified and two UHI were recognize. Campina Grande shows a trend pattern: the urban unplanned growth is responsible for changes in the physical environment and in the form and spatial structure of the city, reflecting on people quality of life. Keywords: change detection, surface temperature, heat islands, urbanization.   


Author(s):  
Pieter Snyman ◽  
A. Stephen Steyn

Urban heat islands (UHIs) are characterised by warmer urban air temperatures compared to rural air temperatures, and the intensity is equal to the difference between the two. Air temperatures are measured at various sites across the city of Bloemfontein and then analysed to determine the UHI characteristics. The UHI is found to have a horseshoe shape and reaches a maximum intensity of 8.2 °C at 22:00. The UHI is largely affected by the local topography.


2019 ◽  
Vol 5 (4) ◽  
pp. eaau4299 ◽  
Author(s):  
Dan Li ◽  
Weilin Liao ◽  
Angela J. Rigden ◽  
Xiaoping Liu ◽  
Dagang Wang ◽  
...  

More than half of the world’s population now live in cities, which are known to be heat islands. While daytime urban heat islands (UHIs) are traditionally thought to be the consequence of less evaporative cooling in cities, recent work sparks new debate, showing that geographic variations of daytime UHI intensity were largely explained by variations in the efficiency with which urban and rural areas convect heat from the land surface to the lower atmosphere. Here, we reconcile this debate by demonstrating that the difference between the recent finding and the traditional paradigm can be explained by the difference in the attribution methods. Using a new attribution method, we find that spatial variations of daytime UHI intensity are more controlled by variations in the capacity of urban and rural areas to evaporate water, suggesting that strategies enhancing the evaporation capability such as green infrastructure are effective ways to mitigate urban heat.


2020 ◽  
Author(s):  
Isaac Buo ◽  
Valentina Sagris ◽  
Iuliia Burdun ◽  
Evelyn Uuemaa

Sign in / Sign up

Export Citation Format

Share Document