scholarly journals Response of Young Papaya Plants to Nitrogen, Phosphorus, and Potassium Supply

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 603E-603
Author(s):  
Bielinski M. Santos ◽  
Jose P. Morales-Payan

Studies were conducted in the Dominican Republic to determine the short-term response of young `Cartagena Ombligua' papaya (Carica papaya) plants to nitrogen (N), phosphorus (P), and potassium (K) fertilization. N, P2O5, K2O were individually applied 20 days after transplanting at rates 0, 6, 12, 18, and 24 g per plant. Plant height, stem diameter, leaf area, and root and shoot dry weight responded to N and K in a quadratic fashion (N:Y= 30.79+ 1.35X-0.07X2; K20:Y = 30.02 +1.6X - 0.06X2). Maximum growth was obtained with 6 and 18 g of N and K2O, respectively. P fertilization did not significantly affect shoot growth, but it stimulated root growth (Y = 2.02 + 0.41X - 0.013X2).

2000 ◽  
Vol 40 (6) ◽  
pp. 867 ◽  
Author(s):  
R. F. Brennan ◽  
M. G. Webb ◽  
A. M. Crowhurst

Native plants are increasingly being grown in Western Australia to produce flowers for export and the nutritional requirement of some of these species is not known. The nitrogen, phosphorus and potassium requirements for optimum growth of seedlings of one such species, Ptilotus exaltatus Nees., were measured in the glasshouse experiment reported here. There was a significant (P<0.05) growth response to nitrogen fertilisers over the range 20–80 mg N/kg soil. At all amounts of phosphorus and potassium, except for the nil-phosphorus treatments, the largest amount of applied nitrogen (80 mg N/kg soil) gave the maximum dry weight of shoots. The dry weight of shoots increased with the addition of phosphorus fertiliser up to 40 mg P/kg soil, particularly with 60 mg potassium and 80 mg N/kg soil. The addition of 160 mg P/kg soil and 120 mg K/kg soil depressed shoot growth at 80 mg N/kg soil. Potassium fertiliser increased plant growth at amounts up to about 60 mg K/kg soil. At the seedling stage of growth, critical concentration in shoots for deficiency was about 1.5% for potassium, and 0.9% for phosphorus. Adequate concentrations in shoots were about 1.7–2.7% for potassium, and 1.0–1.6% for phosphorus.


1978 ◽  
Vol 91 (1) ◽  
pp. 31-45 ◽  
Author(s):  
I. Pearman ◽  
S. M. Thomas ◽  
G. N. Thorne

SummaryEight amounts of nitrogen ranging from 0 to 210 kg N/ha were applied to two tall and one semi-dwarf variety of winter wheat in the spring of 1975 and 1976. The tall varieties were Cappelle-Desprez and Maris Huntsman; the semi-dwarf variety was Maris Fundin in 1975 and Hobbit in 1976. Interactions between varieties and nitrogen were few and small compared with the main effects. All varieties produced their maximum grain yields with 180 kg N/ha. The yield of the semi-dwarf varieties, but not the others, decreased slightly with more nitrogen.Cappelle-Desprez yielded less grain than the other varieties in both years. In 1975 the yields of Maris Fundin and Maris Huntsman were similar and in 1976 Hobbit yielded more than Maris Huntsman. The varieties had similar numbers of ears at maturity and similar patterns of tillering. The semi-dwarf varieties had most grains per spikelet, and hence grains per ear, and Cappelle-Desprez had least. The semi-dwarf varieties had the smallest grains. The semi-dwarf varieties had less straw than the other varieties and hence the largest ratios of grain to total above-ground dry weight. The decrease in dry weight of stem and leaves between anthesis and maturity was similar for all varieties. In 1975 the efficiency of the top two leaves plus top internode in producing grain was the same for all varieties, but in 1976 Hobbit was more efficient than the other two. There were some small differences between varieties in nutrient uptake that were not related to differences in growth. Maris Fundin tended to have a greater phosphorus and potassium content than the tall varieties. Hobbit contained slightly less nitrogen than the tall varieties at maturity, and had a smaller concentration of nitrogen in the grain.Applying 210 kg N/ha doubled grain yield in 1975. Applying nitrogen resulted in a largeincrease in number of ears and a small increase in number of grains per ear due to the development of more fertile spikelets per ear. Nitrogen decreased dry weight per grain, especially of the semi-dwarf varieties. With extra nitrogen, straw dry weight at maturity, shoot dry weight atanthesis and leaf area were all increased relatively more than grain yield, and stems lost moredry weight between anthesis and maturity than without nitrogen. The year 1976 was exceptionallydry and nitrogen had only small effects in that it affected neither straw dry weight nor numberof ears but slightly increased grain yield by increasing the number of spikelets and number of grains per spikelet. It also increased leaf area proportionately to grain yield. In 1975 nitrogen increased evaporation of water from the crop before anthesis but decreased it after anthesis, even though it continued to increase the extraction of water from below 90 cm.


2011 ◽  
Vol 29 (4) ◽  
pp. 220-222
Author(s):  
Kathryne J. Jernigan ◽  
Amy N. Wright

Abstract Research was conducted to screen four landscape shrub taxa for tolerance to repeated flooding events. Plants of Fothergilla × intermedia ‘Mt. Airy’ (dwarf witchalder), Ilex verticillata ‘Winter Red’ (winterberry), Clethra alnifolia ‘Ruby Spice’ (summersweet), and Viburnum nudum Brandywine™ (possumhaw) were flooded repeatedly over six weeks for 0 (non-flooded), 3, or 6 days with a draining period of 6 days between each flooding event. The experiment was repeated for a total of two runs. With the exception of F. × intermedia ‘Mt. Airy’, all taxa showed good visual quality and no reduction in root growth in either run, and effects on shoot growth were minimal. Size index of Clethra alnifolia ‘Ruby Spice’ was 27% higher in plants flooded for 0 or 3 days than in plants flooded for 6 days in run 1 only. Shoot dry weight of Ilex verticillata ‘Winter Red’ was actually 11% higher in plants flooded 6 days days than in plants flooded for 0 or 3 days in run 2. Size index of Viburnum nudum Brandywine™ increased with increasing flood length, and plants flooded for 6 days had a 9% higher SI than plants flooded for 0 days in run 1. With the exception of Fothergilla × intermedia L. ‘Mt. Airy’, all taxa appeared tolerant of and even thrived during flooding and would be appropriate shrub selections for a southeastern United States rain garden.


2001 ◽  
Vol 19 (1) ◽  
pp. 11-14 ◽  
Author(s):  
Wallace G. Pill ◽  
James A. Gunter

Abstract This study was conducted to determine whether treating seeds of ‘Sensation Mixed’ cosmos (Cosmos bipinnatus Cav.) and ‘Bonanza Gold’ marigold (Tagetes patula L.) with paclobutrazol (PB) could suppress seedling growth. Seeds were soaked in solutions of 0, 500 or 1000 mg PB/liter (ppm PB) for 16 hours at 25C (77F) or they were primed [−0.5 MPa (−5 bars) for 7 days at 20C (68F)] in Grade 5 exfoliated vermiculite moistened with 0, 500 or 1000 ppm PB solltuions. Soaked and primed seeds were dried for 1 day at 19C (65F) and 25% relative humidity. These seeds and control (non-treated) seeds were sown into plug cells containing peat-lite. Increasing PB concentration decreased cosmos shoot height at 32 days after planting (DAP), but decreased emergence percentage, responses that were more pronounced with priming than with soaking. A 1 ppm PB growth medium drench [30 ml/cell(0.2 mg PB/cell)] and, to a greater extent a 10 mg PB/liter (ppm PB) shoot spray [2 ml/shoot (0.02 mg PB/shoot)], both applied at 10 DAP, resulted in greater cosmos shoot height suppression at 32 DAP than treatment of seeds with 1000 ppm PB. Soaking marigold seeds in 1000 ppm PB failed to decrease shoot height below those of plants from non-treated seeds at 32 DAP. However, exposure to 1000 ppm PB during priming of marigold seeds resulted in a similar shoot height suppression (13%) as the growth medium drench, and similar shoot dry weight reduction (21%) as the shoot spray. Suppression of shoot growth by this seed treatment was short-term since by five weeks after transplanting into 15 cm (6 in) pots, only marigold plants that had received the growth medium drench or shoot spray were smaller than those of control plants. Treating marigold seeds with 1000 mg ppm PB used about one-fifth the PB used to drench the growth medium.


2015 ◽  
Vol 33 (3) ◽  
pp. 137-141
Author(s):  
Bruce R. Roberts ◽  
Chris Wolverton ◽  
Samantha West

The efficacy of treating soilless substrate with a commercial humectant was tested as a means of suppressing drought stress in 4-week-old container-grown Zinnia elegans Jacq. ‘Thumbelina’. The humectant was applied as a substrate amendment at concentrations of 0.0, 0.8, 1.6 and 3.2% by volume prior to withholding irrigation. An untreated, well-watered control was also included. The substrate of treated plants was allowed to dry until the foliage wilted, at which time the plants were harvested and the following measurements taken: number of days to wilt (DTW), xylem water potential (ψx), shoot growth (shoot dry weight, leaf area) and root growth (length, diameter, surface area, volume, dry weight). For drought-stressed plants grown in humectant-treated substrate at concentrations of 1.6 and 3.2%, DTW increased 25 and 33%, respectively. A linear decrease in ψx was observed as the concentration of humectant increased from 0.0 to 3.2%. Linear trends were also noted for both volumetric moisture content (positive) and evapotranspiration (negative) as the concentration of humectant increased. For non-irrigated, untreated plants, stress inhibited shoot growth more than root growth, resulting in a lower root:shoot ratio. For non-irrigated, humectant-treated plants, the length of fine, water-absorbing roots increased linearly as humectant concentration increased from 0.0 to 3.2%. Using humectant-amended substrates may be a management option for mitigating the symptoms of drought stress during the production of container-grown bedding plants such as Z. elegans.


2015 ◽  
Vol 33 (2) ◽  
pp. 53-57 ◽  
Author(s):  
G.J. Keever ◽  
J.R. Kessler ◽  
G.B. Fain ◽  
D.C. Mitchell

A study was conducted to determine how seedling development stage at transplanting from plug flats into small pots affected growth and flowering of two commonly grown bedding plants. Seeds of Showstar® medallion flower and ‘Las Vegas Pink’ globe amaranth were sown in 392-cell flats on five dates for each of two experimental runs before transplanting into 8.9 cm (3.5 in) cubic pots. At transplanting of both species, plant height, node count and shoot dry weight increased as days from sowing to transplanting increased and there was no visible cessation in shoot growth due to root restriction. Time to first flower from transplanting decreased linearly with both species in both runs, except with medallion flower in the second run, as time from sowing to transplanting increased. In contrast, time to flower of both species from sowing increased linearly as time from sowing to transplanting increased. However, the magnitude of the increase or decrease in time to flower differed between the two runs indicating that other factors, most likely light intensity and duration, besides node counts were affecting time to flower. Globe amaranth height and growth index and medallion flower growth index at first flower decreased as time from sowing to transplanting increased, whereas medallion flower height was not affected by time from sowing to transplanting.


1986 ◽  
Vol 26 (1) ◽  
pp. 23 ◽  
Author(s):  
S Sivasupiramaniam ◽  
R Akkasaeng ◽  
HM Shelton

Field and glasshouse experiments were conducted on an acidic red-yellow podzolic soil of low nitrogen status from south-eastern Queensland to examine the use of nitrogen and lime in promoting leucaena growth. In the field, application of 25 kg nitrogen ha-l at planting increased shoot dry weight by 77, 88, 52 and 51% at weeks 5, 15, 32 and 52 respectively. Equivalent responses to lime (2.5 t ha-1) were 8, 3 1, 64 and 74% respectively. In the glasshouse, shoot, root and nodule dry weights were increased by nitrogen application rates of 50, 100 and 200 kg ha-1. Number, size and dry weight of nodules were suppressed at the highest rate (400 kg ha-1). Nitrogen concentration in youngest fully expanded leaves was increased to over 5% by nitrogen, and a critical nitrogen content of 4.5% (90% of maximum growth) is suggested. Inexplicably, lime application reduced shoot, root and nodule weights at high nitrogen applications. The apparent partial effectiveness of commercial leucaena Rhizobium and the implications of starter nitrogen and lime for leucaena establishment are discussed.


2013 ◽  
Vol 29 (5) ◽  
pp. 449-454 ◽  
Author(s):  
Andrea G. Vincent ◽  
Edmund V.J. Tanner

Abstract:Leaf litter is an important source of nutrients to tropical forest trees, but its importance for understorey seedling growth is not well understood. Seedlings of Licania platypus (n = 190) and Coussarea curvigemmia (n = 304) were transplanted into deeply shaded forest plots in Panama having received 2 y of litter addition or removal and 7 y of fertilization with nitrogen, phosphorus and potassium combined, and their growth and foliar nutrients measured after 13 and 6 mo respectively. Licania platypus growing in litter addition and removal plots had faster height growth and slower leaf growth respectively than in control plots; C. curvigemmia showed no significant effects apart from lower survival in litter addition plots. These effects may be driven by soil nutrients, as suggested by differences in foliar nitrogen and potassium (but not phosphorus) concentrations, and by a pot experiment in a shadehouse using Ochroma pyramidale seedlings, which showed higher leaf area in soils from litter-addition plots, although seedling dry weight was higher only in fertilized soils. Overall, these results show that for one of two species, understorey seedling growth was increased by 2 y of doubled litterfall, and thus that they were probably nutrient limited even in the relatively fertile soils of this semi-deciduous tropical forest.


Sign in / Sign up

Export Citation Format

Share Document