Effects of nitrogen and lime on growth of Leucaena leucocephala cv. Cunningham on a red-yellow podzolic soil in south-eastern Queensland

1986 ◽  
Vol 26 (1) ◽  
pp. 23 ◽  
Author(s):  
S Sivasupiramaniam ◽  
R Akkasaeng ◽  
HM Shelton

Field and glasshouse experiments were conducted on an acidic red-yellow podzolic soil of low nitrogen status from south-eastern Queensland to examine the use of nitrogen and lime in promoting leucaena growth. In the field, application of 25 kg nitrogen ha-l at planting increased shoot dry weight by 77, 88, 52 and 51% at weeks 5, 15, 32 and 52 respectively. Equivalent responses to lime (2.5 t ha-1) were 8, 3 1, 64 and 74% respectively. In the glasshouse, shoot, root and nodule dry weights were increased by nitrogen application rates of 50, 100 and 200 kg ha-1. Number, size and dry weight of nodules were suppressed at the highest rate (400 kg ha-1). Nitrogen concentration in youngest fully expanded leaves was increased to over 5% by nitrogen, and a critical nitrogen content of 4.5% (90% of maximum growth) is suggested. Inexplicably, lime application reduced shoot, root and nodule weights at high nitrogen applications. The apparent partial effectiveness of commercial leucaena Rhizobium and the implications of starter nitrogen and lime for leucaena establishment are discussed.

2015 ◽  
Vol 43 (2) ◽  
pp. 554-560 ◽  
Author(s):  
Olivera STAJKOVIC-SRBINOVIC ◽  
Dušica DELIC ◽  
Nataša RASULIC ◽  
Dragan CAKMAK ◽  
Djordje KUZMANOVIC ◽  
...  

In the present study the effects of Rhizobium inoculation and lime application on the mineral composition (N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, B) of red clover (Trifolium pratense L.), in very acid soil were evaluated. Inoculation with Rhizobium leguminosarum bv. trifolii significantly increased shoot dry weight (SDW) of red clover plants (three times greater), as well as N, Mg, Fe, Mn and Cu contents in plants compared to the control. Application of lime and Rhizobium together, depending on the lime rate (3, 6 or 9 t ha-1 of lime) and the cut, increased SDW significantly, but decreased the contents of N, P, K, Mg, Mn, Zn and B in plants. Regardless of the changes, in all treatments in both cuts, contents of N, K, Ca, Mg, Mn and Zn in plants were among sufficiency levels (Mg content was elevated in the second cut), while Fe content was mainly high, as well as Cu (in the second cut). Contents of P and B in plants were somewhat lower than sufficiency levels, but above critical level. Therefore, red clover can be grown with satisfactory yield and mineral composition in acid soil with Rhizobium inoculation only, but the application of P and B fertilization is desirable.


2016 ◽  
Vol 46 (9) ◽  
pp. 1594-1600
Author(s):  
Giovanna Moura Calazans ◽  
Christiane Abreu de Oliveira ◽  
José Carlos Cruz ◽  
Walter José Rodrigues Matrangolo ◽  
Ivanildo Evódio Marriel

ABSTRACT: Cratylia argentea is a leguminous shrub native to the cerrado, which has great potential for forage production and recovery of degraded areas. This study aimed to isolate, characterize, and select efficient rhizobial strains in symbiosis with Cratylia argentea . Rhizobacteria were isolated from the nodules of 12-month-old plants and cultivated in pots containing cerrado soil. Twenty-five bacterial strains were obtained, which displayed extensive variability with respect to morphological and symbiotic characteristics. Cratylia argentea seeds were planted in pots containing 5kg of cerrado soil and maintained in the greenhouse. The treatments consisted of 25 rhizobial isolates, two controls (without nitrogen and without inoculation), with or without nitrogen fertilization (5mgN·plant-1·week-1), and four replications. Plants were cultivated for 150 days after planting seeds to evaluate nodule number, nodule dry weight, shoot and root dry weight, shoot and root N content, and relative and symbiotic efficiency. Thirteen isolates improved shoot dry weight (up to 65.8%) and shoot nitrogen concentration (up to 76%) compared with those of control treatments. Two isolates, 4 (CR42) and 22 (CR52), conferred higher symbiotic efficiency values of approximately 20%. Therefore, these two rhizobial isolates displayed the highest potential as beneficial inoculants to optimize the symbiotic efficiency for Cratylia and to increase the incorporation of nutrients and biomass into the productive system in the cerrado.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 460 ◽  
Author(s):  
Juan Eduardo Sosa-Hernández ◽  
Laura Isabel Rodas-Zuluaga ◽  
Carlos Castillo-Zacarías ◽  
Magdalena Rostro-Alanís ◽  
Reynaldo de la Cruz ◽  
...  

Several factors have the potential to influence microalgae growth. In the present study, nitrogen concentration and light intensity were evaluated in order to obtain high biomass production and high phycoerythrin accumulation from Porphyridium purpureum. The range of nitrogen concentrations evaluated in the culture medium was 0.075–0.450 g L−1 and light intensities ranged between 30 and 100 μmol m−2 s−1. Surprisingly, low nitrogen concentration and high light intensity resulted in high biomass yield and phycoerythrin accumulation. Thus, the best biomass productivity (0.386 g L−1 d−1) and biomass yield (5.403 g L−1) were achieved with NaNO3 at 0.075 g L−1 and 100 μmol m−2 s−1. In addition, phycoerythrin production was improved to obtain a concentration of 14.66 mg L−1 (2.71 mg g−1 of phycoerythrin over dry weight). The results of the present study indicate that it is possible to significantly improve biomass and pigment production in Porphyridium purpureum by limiting nitrogen concentration and light intensity.


2008 ◽  
Vol 59 (2) ◽  
pp. 167 ◽  
Author(s):  
Tatjana Balint ◽  
Zdenko Rengel ◽  
David Allen

Eighty-four canola genotypes, including current commercial Australian genotypes, some older Australian genotypes, new breeding lines, and several genotypes from China, were screened for nitrogen and sulfur efficiency in the early growth stage. Plants were grown in a glasshouse using virgin brown Lancelin soil (Uc4.22) supplied with basal nutrients. The treatments were: (i) adequate nitrogen and sulfur, (ii) low nitrogen, and (iii) low sulfur. Canola shoots were harvested at 38 days after sowing when growth reduction and the nitrogen and sulfur deficiency symptoms were evident in most genotypes. The nitrogen or sulfur efficiency in canola genotypes was evaluated on the basis of: (1) growth at low nitrogen or sulfur supply, (2) growth at low relative to adequate nitrogen and sulfur supply, and (3) nitrogen or sulfur utilisation efficiency expressed as shoot dry weight per unit of nitrogen or sulfur content in shoots. Genotypic variation in growth and nitrogen or sulfur efficiency in canola germplasm was significant. Two genotypes (Chikuzen and 46C74) were ranked efficient and 2 inefficient (CBWA-005 and Beacon) in uptake and utilisation of nitrogen under all 3 criteria. In terms of sulfur efficiency, genotype Argentina was ranked efficient, whereas CBWA-003 and IB 1363 were classified inefficient under all 3 criteria. Two canola genotypes (Surpass 600 and 46C74) were both nitrogen- and sulfur-efficient in terms of relative growth at low v. adequate nutrition; their use in the breeding programs could be considered.


2015 ◽  
Vol 25 (3) ◽  
pp. 370-379 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

The objective of this study was to determine the optimal controlled-release fertilizer (CRF) application rates or ranges for the production of five 2-gal nursery crops. Plants were evaluated following fertilization with 19N–2.6P–10.8K plus minors, 8–9 month CRF incorporated at 0.15, 0.45, 0.75, 1.05, 1.35, and 1.65 kg·m−3 nitrogen (N). The five crops tested were bigleaf hydrangea (Hydrangea macrophylla), ‘Green Velvet’ boxwood (Buxus ×), ‘Magic Carpet’ spirea (Spiraea japonica), ‘Palace Purple’ coral bells (Heuchera micrantha), and rose of sharon (Hibiscus syriacus). Most plant growth characteristics (i.e., growth index, plant height, leaf area, and shoot dry weight) were greater in high vs. low CRF treatments at the final harvest. Low CRF rates negatively impacted overall appearance and marketability. The species-specific CRF range recommendations were 1.05 to 1.35 kg·m−3 N for rose of sharon, 0.75 to 1.05 kg·m−3 N for ‘Magic Carpet’ spirea, and 0.75 to 1.35 kg·m−3 N for bigleaf hydrangea and ‘Green Velvet’ boxwood, whereas the recommended CRF rate for ‘Palace Purple’ coral bells was 0.75 kg·m−3 N. Overall, species-specific CRF application rates can be used to manage growth and quality of containerized nursery crops during production in a temperate climate.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1125b-1125
Author(s):  
Allen D. Owings ◽  
Steven E. Newman

The action of foliar-applied uniconazole, paclobutrazol, dikegulac-sodium, ancymidol, 6-BA, GA4+7, and 6-BA + GA4+7 On container–grown Photinia × fraseri was studied over a one year period. Vegetative growth habit was evaluated at three month intervals. Shoot dry weight and histological examination of stern anatomy in the apical meristematic region was conducted at experiment termination.Several plant growth regulators, primarily uniconazole, 6-BA, 6-BA + GA4+7, and dikegulac-sodium, stimulated lateral branching. Linear increases in lateral branching occurred as application rates increased. High application rates of uniconazole and paclobutrazol created an asymmetrical growth habit and decreased dry weight accumulation.


2015 ◽  
Vol 33 (2) ◽  
pp. 66-75 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

To determine the response of container-grown shrubs to controlled-release fertilizer (CRF) rate when grown in a temperate climate, Polyon® 19–04–10 + Minors, an 8–9 month CRF, was incorporated into growing substrates for ‘Gro-Low’ fragrant sumac (Rhus aromatica Aiton), ‘Goldmound’ spirea (Spiraea × bumalda Burv.) and ‘Bloomerang’® purple lilac (Syringa × ‘Penda’) transplants. Also, a 15–06–11 + Micros, a 10–12 month CRF, was incorporated into growing substrates for ‘Green Mound’ boxwood (Buxus × ‘Green Mound’), ‘Runyan’ yew (Taxus × media) and ‘Emerald’ white-cedar (arborvitae) (Thuja occidentalis L.) transplants, at six rates (0.15, 0.45, 0.75, 1.05, 1.35 and 1.65 kg·m−3 N; 0.25, 0.76, 1.26, 1.77, 2.28 and 2.78 lb·yd−3 N). We observed greater growth index, leaf area, and shoot dry weight at high vs. low CRF rates for the majority of species. Nutrient deficiency symptoms such as light green leaves were observed at low CRF rates for some species, including fragrant sumac, lilac and white-cedar. Optimal species-specific CRF application rates were 1.05 kg·m−3 N (1.77 lb·yd−3 N) for lilac and yew and 0.45 kg·m−3 N (0.76 lb·yd−3 N) for boxwood and white-cedar, while the optimal CRF ranges were 0.75 to 1.35 kg·m−3 N (1.26 to 2.28 lb·yd−3 N) for fragrant sumac and 0.75 to 1.05 kg·m−3 N (1.26 to 1.77 lb·yd−3 N) for spirea. Adjusting CRF application rates based on plant response may provide nursery growers with an efficient tool for managing nursery crop growth and production timing in the temperate climate.


2020 ◽  
Vol 36 ◽  
Author(s):  
Alcione da Silva Arruda ◽  
Wesley Costa Silva ◽  
Roberta Camargos de Oliveira ◽  
Ernane Miranda Lemes ◽  
Gabriela da Silva Guimarães ◽  
...  

Nitrogen accumulation in hydroponically-grown lettuce may pose a health risk to consumers. Thus, the objective of this study was to analyze different concentrations of nitrogen applications in hydroponic lettuce cultivation and their effect on toxicity, cytotoxicity and genotoxicity. A nutrient film technique (NFT) hydroponic system was used to grow the lettuce variety “Vanda.” The treatments consisted of different concentrations of nitrogen (in the form of calcium nitrate) in Furlani solution (75, 100, 125 and 150%), a negative and a positive control. The following commercial characteristics were measured: plant fresh weight (PFW), root fresh weight (RFW), shoot fresh weight (SFW), shoot diameter (SD), root dry weight (RDW), shoot dry weight (SDW) and leaf nitrogen (LN). Cytogenotoxicity was indicated by toxicity, cytotoxicity and genotoxicity, which were in turn determined by root length, the mitotic index, chromosomal aberrations and the presence of micronuclei.  The nitrogen concentrations used in this experiment did not cause phenotypic toxicity or cytotoxicity in lettuce roots. The most severe genotoxicity was observed at the 125% nitrogen concentration, which nevertheless did not affect commercial characteristics. Although nitrogen fertilization provides great benefits to agriculture, such as greater yields, indiscriminate use should be avoided since concentrations above recommended rates may induce genotoxicity.


2009 ◽  
Vol 60 (6) ◽  
pp. 578 ◽  
Author(s):  
Drew Robertson ◽  
Heping Zhang ◽  
Jairo A. Palta ◽  
Timothy Colmer ◽  
Neil C. Turner

Tiller production and survival are suppressed on soils prone to waterlogging. The tiller production and growth of wheat (Triticum aestivum cv. Wyalkatchem) was investigated in a glasshouse experiment during and after a transient waterlogging to examine its effect on grain yield. Wheat plants received either a high or low nitrogen (N) application at sowing and were waterlogged at 22 days after sowing for 14 days. Plants received a second either high or low N application after waterlogging was released. Waterlogging induced a transient N deficiency. The N concentration of the youngest expanded leaf on the mainstem and tillers declined markedly during waterlogging, but its recovery 14 days after the waterlogging was ended was independent of treatment, reaching a greater than the critical minimum concentration of 3.5%. The growth of primary tillers 1 and 2 was severely inhibited by waterlogging while the exsertion of new tillers was delayed by 9 days. Shoot dry weight of the waterlogged plants at final harvest was reduced by 37% compared with the non-waterlogged plants. During the recovery period, the waterlogged plants produced higher order tillers that produced late ears. As a result, the number of ears per plant was similar in plants in continuously drained or previously waterlogged soil. Waterlogging reduced the number of grains per ear on the mainstem and tillers, and consequently grain yield by 32%. High N application after waterlogging increased grain yield by ~20%, but high N applied at sowing had no effect on yield. This suggests that N application after waterlogging can reduce the detrimental effect of waterlogging on grain yields in areas prone to waterlogging.


2015 ◽  
Vol 33 (2) ◽  
pp. 58-65
Author(s):  
G.A. Andiru ◽  
C.C. Pasian ◽  
J.M. Frantz

Bedding impatiens plants were grown with a 16N-3.9P-10K controlled-release-fertilizer (CRF) of 5–6 or 8–9 month longevities placed at four positions in the container: top-dressed, incorporated, top-one-third, and bottom. These were compared to plants grown with a 20N-4.4P-16.6 water-soluble fertilizer (WSF) at a rate of 150 mg·L−1 nitrogen (N) (150 ppm N). All treatments received the same volume of tap water (CRF treatments) or fertilizer solution (WSF treatment), which was enough to achieve a 20 to 30% leaching fraction. Leachates were collected and measured at each irrigation and the concentrations of N, phosphorous (P), and potassium (K) were measured. Shoot dry weight (SDW) and canopy cover (CC) were also determined. Fertilizing with WSF produced plants of similar size as CRF treatments. CRF applied at the bottom of the substrate leached the highest amount of N among all treatments. Higher concentrations for most nutrients were measured in the leachates from containers treated with 5–6 month CRF during the first 20 d after planting than the next 23 to 34 days. The higher levels of nutrients in the leachates observed within two weeks after planting does not support the use of 5–6 month CRF at the application rates used in this experiment with short-cycle plants such as bedding plants in compared to use of WSF. Except for the bottom placement treatment, the use of 8–9 month CRF resulted in generally less nutrients leached than WSF.


Sign in / Sign up

Export Citation Format

Share Document