Soil–Root Interface Water Potential in Sweet Corn Affected by Organic Fertilizations and Effective Microbe Applications

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 491c-491
Author(s):  
H.L. Xu ◽  
H. Umemura ◽  
T. Higa

We examined effects of organic fertilizations and effective microbes (EM, mainly Lactobacillus, Rhodopseudomonas, Streptomyces, and Aspergillus) applications on soil-root interface water potential Ψs-r of `Honey-Bantam' sweet corn. The contributions to Ψs-r from root amount and root activity were analyzed using the Ohm's law. Plants were grown in 1/5000 a Wagner's pots filled with Andosol and six treatments were made as follows: 1) organic materials fermented anaerobically with EM added; 2) anaerobic organic materials; 3) organic materials fermented aerobically with EM added; 4) aerobic organic materials; 5) chemical fertilizers with EM applied, and 6) chemical fertilizers. One month after sowing, as soil water decreased, Ψs-r was maintained higher in organic fertilized plants than chemical fertilized ones and also higher in plants with EM applications than those without EM. The relatively high Ψs-r was contributed by both their large root amount and high root activity. As a consequence, photosynthesis under soil water deficit conditions were also maintained relatively high in these plants. Maintenance of a high Ψs-r favored plants to resist against water deficits. Moreover, the Ψs-r analysis is a practicable additional means to examine the soil-plant water status under undisturbed conditions.

1981 ◽  
Vol 8 (1) ◽  
pp. 65 ◽  
Author(s):  
WS Meyer ◽  
GC Green

Diurnal trends in leaf diffusive conductance, Cs, leaf water potential ΨL and rates of evapotranspiration E*T were monitored on orchard-grown orange trees and field-grown crops of soybeans and wheat. Changes in these measurements were observed on soybeans and wheat as the soil water deficit increased. Maximum values of Cs of well watered plants differed between the three species (soybeans > wheat >> orange) probably as a result of different stomatal sizes and densities. Diurnal trends in Cs were common for all species, with maximum values occurring during midmorning followed by slightly lower midday values. The reduction in Cs around midday became much more pronounced as the soil water deficit increased. Slight increases in Cs values of soybeans and wheat were recorded during late afternoon. This pattern of stomatal aperture change can reasonably be explained in terms of responses to both radiant energy and plant water status. The pattern also seems to comply with the premise that stomates interact to optimize the rate of assimilation while minimizing the rate of transpiration in a given environment. Stomatal action appeared to have little effect on daily ET in soybeans under well watered conditions; ET was closely related to incoming radiant energy. The low midday values of Cs apparently caused a midday plateau in the rate of CT in wheat while even lower daytime Cs values for orange seemed to cause a low and fairly constant rate of ET which was relatively insensitive to changes in incoming radiant energy. The value of ΨL attained during mid morning at which Cs initially began to decline was fairly constant for soybeans (-0.9 to -1.1 MPa) as the predawn ΨL decreased from -0.1 to -0.8 MPa. A similar decline in predawn ΨL for wheat caused a change in the value of ΨL at which initial decreases in Cs were observed from - 1.3 MPa to -2.4 MPa. Thus there appeared to be little adjustment of stomatal action in soybeans but considerable adjustment in wheat.


1994 ◽  
Vol 42 (2) ◽  
pp. 205 ◽  
Author(s):  
K Akilan ◽  
JA Considine ◽  
DC Joyce ◽  
JK Marshall

Changes in leaf angle and flower diameter of Geraldton wax (Chamelaucium uncinatum) in response to declining shoot water potential (ψshoot)) were assessed as indicators of plant water status. Leaves and petals in Geraldton wax moved vertically as ψshoot decreased. In cv. Purple Pride, the leaf angle of recently-matured, fully-expanded leaves and the diameter of fully developed flowers showed strong linear correlations with declining ψshoot (r2 = 0.90 and 0.94 respectively). The relationships were less strong when applied to almost fully expanded leaves (r2 = 0.51) and young flowers (r2 = 0.64). Older leaves showed no consistent correlation between leaf angle and ψshoot (r2 = 0.01). Similar results were observed in cvv. Alba and Lady Stephanie, but the change in orientation for a given change in ψshoot was smaller in cv. Alba than those observed in cvv. Purple Pride and Lady Stephanie. Vertical orientation of leaves and flower petals in droughted plants could be used as indicators of level of water deficit.


2019 ◽  
Vol 35 (1) ◽  
pp. 39-50
Author(s):  
H. C. Pringle, III ◽  
L. L. Falconer ◽  
D. K. Fisher ◽  
L. J. Krutz

Abstract. Irrigated acreage is expanding and groundwater supplies are decreasing in the Mississippi Delta. Efficient irrigation scheduling of soybean [ (L.) Merr] will aid in conservation efforts to sustain groundwater resources. The objective of this study was to develop irrigation initiation recommendations for soybean grown on Mississippi Delta soils. Field studies were conducted on a deep silty clay (SiC) in 2012, 2013, 2014, and 2015 and on a deep silty clay loam (SiCL) and deep silt loam (SiL) or loam (L) soil in 2013, 2014, and 2015. Irrigation was initiated multiple times during the growing season and soybean yield and net return were determined to evaluate the effectiveness of each initiation timing. Growth stage, soil water potential (SWP), and soil water deficit (SWD) were compared at these initiation timings to determine which parameter or combination of parameters consistently predicted the resulting greatest yields and net returns. Stress conditions that reduce yield can occur at any time from late vegetative stages to full seed on these deep soils. The wide range of trigger values found for SWP and SWD to increase yields in different years emphasizes the complexity of irrigation scheduling. Monitoring soil moisture by itself or use of a single trigger value is not sufficient to optimize irrigation scheduling to maximize soybean yield with the least amount of water every year on these soils. Monitoring one or more parameters (e.g., leaf water potential, canopy temperature, air temperature, humidity, solar radiation, and wind) is needed in conjunction with soil moisture to directly or indirectly quantify the abiotic stresses on the plant to better define when a yield reducing stress is occurring. Keywords: Irrigation initiation, Irrigation scheduling, Soil water deficit, Soil water potential, Soybean, Water conservation.


2017 ◽  
Vol 189 ◽  
pp. 137-147 ◽  
Author(s):  
Xun Wu ◽  
Wenjing Zhang ◽  
Wen Liu ◽  
Qiang Zuo ◽  
Jianchu Shi ◽  
...  

1988 ◽  
Vol 68 (4) ◽  
pp. 957-967 ◽  
Author(s):  
D. L. SMITH ◽  
M. DIJAK ◽  
D. J. HUME

White bean (Phaseolus vulgaris L.) is generally reported to fix less N than soybean (Glycine max Merrill [L.]). Recent work has shown that in soybean the onset of physiological responses that conserve plant and soil water occurs at greater water deficits than in some other legumes. Little is known about water use regulation in white bean. Research was conducted to compare the responses of these two species to water deficit, particularly its effects on N2 fixation, in both controlled environment and field conditions. In the growth room, plant water potential, leaf diffusive resistance, acetylene reduction and nodule mass per plant were measured for both species during progressive drought, and compared to watered controls. In the field, the leaf diffusive resistance of irrigated and unirrigated plants of both species was measured, as was the soil water potential in plots where these crops were grown. Under conditions of increasing water deficit white bean reacts to conserve plant and soil water sooner than soybean: closing its stomates earlier under drought conditions and maintaining higher plant water potentials. White bean acetylene reduction declined more rapidly over time and over plant water potential levels, but not over changes in leaf diffusive resistance, than that of soybean, as the droughting progressed. In the field, under drought conditions, white bean root nodules senesced, while soybean nodules did not, and white bean was observed to exhibit more parahelionasty than soybean. The onset of physiological responses that conserve plant and soil water occurred at lesser water deficits in white bean than soybean, and this was reflected in more extreme effects on N2 fixation by white bean.Key words: White bean, soybean, water deficit, acetylene reduction, nitrogen fixation, nodulation


2013 ◽  
Vol 405-408 ◽  
pp. 2273-2276
Author(s):  
Heng Jia Zhang ◽  
Jing Li

An experiment was conducted to determine the effect of mulched drip irrigation under water deficit on soil water content (SWC), stored soil water (SSW), daily water consumption (DWC) and ratio of water consumption in total water use (RWC) of potato in an arid area. Five water deficit treatments designed to subject potato to various levels of soil water deficit at different crop growth stages and a full irrigation control were established. The result indicated that the maximum SWC was at 20 cm depth in soil profile and that in 10 to 40 cm increment varied sharply during potato growing season. The SWC, SSW, DWC and RWC were significantly affected by mulched drip irrigation at water deficit regulation stages except at starch accumulation. Therefore, proper levels of soil water deficit regulated with mulched drip irrigation at proper plant growth stages could be used to regulate soil water status, stored soil water and crop water consumption effectively.


2021 ◽  
Vol 47 (3) ◽  
pp. 110-115
Author(s):  
Johannes Hertzler ◽  
Steffen Rust

Soil water potential can be used as a proxy for plant available water in irrigation scheduling. This study investigated the relationship between soil water potential and plant water status of pines (Pinus sylvestris L.) planted into two different substrates. Predawn leaf water potential as a well-established measure of the plant water status and soil water potential correlated very well. However, estimating the plant water status from individual sensor readings is subject to significant estimation errors. Furthermore, it was shown that heterogeneous soil/root ball combinations can lead to critical effects on the soil water balance, and that sensors installed outside of the root balls cannot estimate the plant water status without site-specific calibration.


1988 ◽  
Vol 28 (3) ◽  
pp. 315 ◽  
Author(s):  
SJ Blaikie ◽  
FM Martin ◽  
WK Mason ◽  
DJ Connor

The water relations of white clover and paspalum as monocultures and components of a mixed pasture were studied on a normal and a modified soil profile during the interval between 2 successive irrigations. Responses of individual species were similar in monocultures and mixed pastures. On the normal profile white clover was the first species to react to soil water deficit when the rate of leaf elongation fell by 33% to about 10 mm/day after 30 mm of cumulative evaporation minus rainfall (E - R). This was followed by a reduction in dawn and midday leaf water potential at around 50 mm E - R. After 65 mm E - R, leaf elongation had ceased. In contrast, paspalum showed no signs of water shortage until 70-80 mm E - R. At this stage both the rate of leaf elongation and midday leaf water potential fell. After 90 mm E - R the dawn leaf water potential fell and by 120 mm E - R leaf elongation was negligible. Modification of the profile increased soil water availability by allowing more extraction of water at depth in the profile. This delayed the onset of water stress by about 40 mm E - R in both species. These observations show that the common irrigation interval of 60-90 mm E - R in northern Victoria is likely to restrict pasture yields because it causes a period of soil water deficit stress, especially for white clover, and the development of leaf area is impeded, increasing the time taken for canopies to recover maximum productivity after grazing. To overcome these limitations farmers will have to water more frequently or modify the soil profile to provide pastures with a better water supply.


Sign in / Sign up

Export Citation Format

Share Document