Cover Crops for San Joaquin Valley Row Crop Production Systems

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 494e-494
Author(s):  
J.P. Mitchell ◽  
T.S. Prather ◽  
K.J. Hembree ◽  
P.B. Goodell ◽  
D.M. May ◽  
...  

There is currently considerable interest in the use of cover crops to improve the productivity and sustainability of agroecosystems in California. Adoption of cover crops into San Joaquin Valley row cropping systems has been slow, however, largely because growth characteristics of potentially suitable cover crop species and mixtures have not been identified for the tight windows of opportunity that exist within the region's intensive rotations, and because of uncertainy about the amount of water required to grow a cover crop. In 1995–96 and 1997–98, we screened 15 potential late-summer and winter cover crop species and mixtures planted monthly from 1 Aug. through 1 Nov. and harvested at 30-day intervals through March. In 1995–96, Sorghum-sudan produced 36,543 lb dry matter/acre and was the highest-producing late-summer species in a December-harvested August planting. Triticale and Merced rye were highest-producing winter species, yielding 19,277 and 10,155 lb dry weight/acre, respectively, during the 5-month period from October to March.

2019 ◽  
Vol 33 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Derek M. Whalen ◽  
Mandy D. Bish ◽  
Bryan G. Young ◽  
Aaron G. Hager ◽  
Shawn P. Conley ◽  
...  

AbstractIn recent years, the use of cover crops has increased in U.S. crop production systems. An important aspect of successful cover crop establishment is the preceding crop and herbicide program, because some herbicides have the potential to persist in the soil for several months. Few studies have been conducted to evaluate the sensitivity of cover crops to common residual herbicides used in soybean production. The same field experiment was conducted in 2016 in Arkansas, Illinois, Indiana, Missouri, Tennessee, and Wisconsin, and repeated in Arkansas, Illinois, Indiana, Mississippi, and Missouri in 2017 to evaluate the potential of residual soybean herbicides to carryover and reduce cover crop establishment. Herbicides applied during the soybean growing season included acetochlor; acetochlor plus fomesafen; chlorimuron plus thifensulfuron; fomesafen; fomesafen plus S-metolachlor followed by acetochlor; imazethapyr; pyroxasulfone; S-metolachlor; S-metolachlor plus fomesafen; sulfentrazone plus S-metolachlor; sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor; and sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor followed by acetochlor. Across all herbicide treatments, the sensitivity of cover crops to herbicide residues in the fall, from greatest to least, was forage radish = turnip > annual ryegrass = winter oat = triticale > cereal rye = Austrian winter pea = hairy vetch = wheat > crimson clover. Fomesafen (applied 21 and 42 days after planting [(DAP]); chlorimuron plus thifensulfuron and pyroxasulfone applied 42 DAP; sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor; and sulfentrazone plus S-metolachlor followed by fomesafen plus S-metolachlor followed by acetochlor caused the highest visual ground cover reduction to cover crop species at the fall rating. Study results indicate cover crops are most at risk when following herbicide applications in soybean containing certain active ingredients such as fomesafen, but overall there is a fairly low risk of cover crop injury from residual soybean herbicides applied in the previous soybean crop.


2019 ◽  
Vol 34 (1) ◽  
pp. 1-10
Author(s):  
Derek M. Whalen ◽  
Mandy D. Bish ◽  
Bryan G. Young ◽  
Shawn P. Conley ◽  
Daniel B. Reynolds ◽  
...  

AbstractThe use of cover crops in soybean production systems has increased in recent years. There are many questions surrounding cover crops—specifically about benefits to crop production and most effective herbicides for spring termination. No studies evaluating cover crop termination have been conducted across a wide geographic area, to our knowledge. Therefore, field experiments were conducted in 2016 and 2017 in Arkansas, Indiana, Mississippi, Missouri, and Wisconsin for spring termination of regionally specific cover crops. Glyphosate-, glufosinate-, and paraquat-containing treatments were applied between April 15 and April 29 in 2016 and April 10 and April 20 in 2017. Visible control of cover crops was determined 28 days after treatment. Glyphosate-containing herbicide treatments were more effective than paraquat- and glufosinate-containing treatments, providing 71% to 97% control across all site years. Specifically, glyphosate at 1.12 kg ha−1 applied alone or with 2,4-D at 0.56 kg ha−1, saflufenacil at 0.025 kg ha−1, or clethodim at 0.56 kg ha−1 provided the most effective control on all grass cover crop species. Glyphosate-, paraquat-, or glufosinate-containing treatments were generally most effective on broadleaf cover crop species when applied with 2,4-D or dicamba. Results from this research indicate that proper herbicide selection is crucial to successfully terminate cover crops in the spring.


2022 ◽  
pp. 112-120
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Lynn Epstein ◽  
Jeffery A. Dahlberg ◽  
Teamrat Ghezzehei ◽  
...  

To meet the requirements of California's Sustainable Groundwater Management Act, there is a critical need for crop production strategies with less reliance on irrigation from surface and groundwater sources. One strategy for improving agricultural water use efficiency is reducing tillage and maintaining residues on the soil surface. We evaluated high residue no-till versus standard tillage in the San Joaquin Valley with and without cover crops on the yields of two crops, garbanzo and sorghum, for 4 years. The no-till treatment had no primary or secondary tillage. Sorghum yields were similar in no-till and standard tillage systems while no-till garbanzo yields matched or exceeded those of standard tillage, depending on the year. Cover crops had no effect on crop yields. Soil cover was highest under the no-till with cover crop system, averaging 97% versus 5% for the standard tillage without cover crop system. Our results suggest that garbanzos and sorghum can be grown under no-till practices in the San Joaquin Valley without loss of yield.


2020 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
Sarah L. Strauss

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.


2017 ◽  
Vol 31 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as component of Midwest corn and soybean production systems has led to the need for additional research, including the effects of residual corn and soybean herbicide treatments on fall cover crop establishment. Field studies were conducted in 2013, 2014, and 2015 in Columbia, Missouri to investigate the effects of common residual herbicides applied in corn and soybean on establishment of winter wheat, tillage radish, cereal rye, crimson clover, winter oat, Austrian winter pea, Italian ryegrass, and hairy vetch. Cover crops were evaluated for stand and biomass reduction 28 d after emergence (DAE). Rainfall from herbicide application to cover crop seeding date was much greater in 2014 and 2015, which resulted in less carryover in these years compared to 2013. When averaged across all herbicides evaluated in these experiments, the general order of sensitivity of cover crops to herbicide carryover, from greatest to least was Austrian winter pea=crimson clover>oilseed radish>Italian ryegrass>hairy vetch>wheat >winter oat>cereal rye. Cereal rye had the fewest instances of biomass or stand reduction with only four out of the 27 herbicides adversely effecting establishment. Pyroxasulfone consistently reduced Italian ryegrass and winter oat biomass at least 67% in both the corn and soybean experiments. In the soybean experiment, imazethapyr- and fomesafen-containing products resulted in severe stand and biomass reduction in both years while flumetsulam-containing products resulted in the greatest carryover symptoms in the corn experiment. Results from these experiments suggest that several commonly used corn and soybean herbicides have the potential to hinder cover crop establishment, but the severity of damage will depend on weather, cover crop species, and the specific herbicide combination.


2017 ◽  
Vol 31 (4) ◽  
pp. 514-522 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as a component of Midwest corn and soybean production systems has led to a greater need to understand the most effective herbicide treatments for cover crop termination prior to planting corn or soybean. Previous research has shown that certain cover crop species can significantly reduce subsequent cash crop yields if not completely terminated. Two field experiments were conducted in 2013, 2014, and 2015 to determine the most effective herbicide program for the termination of winter wheat, cereal rye, crimson clover, Austrian winter pea, annual ryegrass, and hairy vetch; and cover crops were terminated in early April or early May. Visual control and above ground biomass reduction was determined 28 d after application (DAA). Control of grass cover crop species was often best with glyphosate alone or combined with 2,4-D, dicamba, or saflufenacil. The most consistent control of broadleaf cover crops occurred following treatment with glyphosate +2,4-D, dicamba, or saflufenacil. In general, control of cover crops was higher with early April applications compared to early May. In a separate study, control of 15-, 25-, and 75-cm tall annual ryegrass was highest with glyphosate at 2.8 kg ha−1or glyphosate at 1.4 kg ha−1plus clethodim at 0.136 kgha−1. Paraquat- or glufosinate-containing treatments did not provide adequate annual ryegrass control. For practitioners who desire higher levels of cover crop biomass, these results indicate that adequate levels of cover crop control can still be achieved in the late spring with certain herbicide treatments. But it is important to consider cover crop termination well in advance to ensure the most effective herbicide or herbicide combinations are used and the products are applied at the appropriate stage.


2018 ◽  
Vol 32 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Taïga B. Cholette ◽  
Nader Soltani ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
Peter H. Sikkema

AbstractGlyphosate-resistant (GR) and multiple herbicide–resistant (groups 2 and 9) Canada fleabane have been confirmed in 30 and 23 counties in Ontario, respectively. The widespread incidence of herbicide-resistant Canada fleabane highlights the importance of developing integrated weed management strategies. One strategy is to suppress Canada fleabane using cover crops. Seventeen different cover crop monocultures or polycultures were seeded after winter wheat harvest in late summer to determine GR Canada fleabane suppression in corn grown the following growing season. All cover crop treatments seeded after wheat harvest suppressed GR Canada fleabane in corn the following year. At 4 wk after cover crop emergence (WAE), estimated cover crop ground cover ranged from 31% to 68%, a density of 124 to 638 plants m–2, and a range of biomass from 29 to 109 g m–2, depending on cover crop species. All of the cover crop treatments suppressed GR Canada fleabane in corn grown the following growing season from May to September compared to the no cover crop control. Among treatments evaluated, annual ryegrass (ARG), crimson clover (CC)/ARG, oilseed radish (OSR)/CC/ARG, and OSR/CC/cereal rye (CR) were the best treatments for the suppression of GR Canada fleabane in corn. ARG alone or in combination with CC provided the most consistent GR Canada fleabane suppression, density reduction, and biomass reduction in corn. Grain corn yields were not affected by the use of the cover crops evaluated for Canada fleabane suppression.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 289-293 ◽  
Author(s):  
Michael J. Adler ◽  
Carlene A. Chase

The phytotoxicity of aqueous foliar extracts and ground dried residues of sunn hemp (Crotalaria juncea L.), cowpea [Vigna unguiculata (L.) Walp. cv. Iron Clay], and velvetbean [Mucuna deeringiana (Bort) Merr.] to crop and weed germination and growth was evaluated to compare the allelopathic potential of the cover crops. By 14 days after treatment (DAT), goosegrass [Eleusine indica (L.) Gaertn.] germination with 5% aqueous extracts of all cover crops (w/v fresh weight basis) was similar and greater than 75% of control. However, with the 10% extracts, goosegrass germination was lowest with cowpea extract, intermediate with velvetbean extract, and highest with sunn hemp extract. Livid amaranth (Amaranthus lividus L.) germination declined to ≈50% with cowpea and sunn hemp extracts and even lower to 22% with velvetbean extract. The suppression of livid amaranth germination was greater with the 10% extracts than the 5% extracts. Bell pepper (Capsicum annuum L.) germination was unaffected by velvetbean extract, inhibited more by the 5% cowpea extract than the 10% extract, and was also sensitive to the 10% sunn hemp extract. All cover crop extracts resulted in an initial delay in tomato (Lycopersicon esculentum Mill.) germination, but by 14 DAT, inhibition of germination was apparent only with cowpea extract. The phytotoxicity of ground dried residues of the three cover crops on germination, plant height, and dry weight of goosegrass, smooth amaranth (A. hybridus L.), bell pepper, and tomato was evaluated in greenhouse studies. Goosegrass germination was inhibited in a similar manner by residues of the three cover crops to 80% or less of control. Smooth amaranth germination, plant height, and dry biomass were more sensitive to sunn hemp residues than to cowpea and velvetbean residues. Bell pepper germination, plant height, and dry weight were greater than 90% of control except for dry weight with cowpea residue, which was only 78% of control. The greatest effect of cover crop residue on tomato occurred with dry weight, because dry weights with cowpea and sunn hemp were only 76% and 69% of control, respectively, and lower than with velvetbean. There was more evidence of cover crop phytotoxicity with the weed species than with the crop species and cowpea extracts and residue affected all species more consistently than those of sunn hemp and velvetbean.


2014 ◽  
Vol 7 ◽  
pp. ASWR.S13861 ◽  
Author(s):  
Corey G. Lacey ◽  
Shalamar D. Armstrong

Little is known about the timing and quantity of nitrogen (N) mineralization from cover crop residue following cover crop termination. Therefore, the objective of this study was to examine the impact of cover crop species on the return of fall applied N to the soil in the spring following chemical and winter terminations. Fall N was applied (200 kg N ha−1) into a living stand of cereal rye, tillage radish, and control (no cover crop). After chemical termination in the spring, soil samples were collected weekly and were analyzed for inorganic N (NO3-N and NH4-N) to investigate mineralization over time. Cereal rye soil inorganic N concentrations were similar to that of the control in both the spring of 2012 and 2013. Fall N application into tillage radish, cereal rye, and control plots resulted in an average 91, 57, and 66% of the fall N application rate as inorganic N in the spring at the 0-20 cm depth, respectively. The inclusion of cover crops into conventional cropping systems stabilized N at the soil surface and has the potential to improve the efficiency of fall applied N.


2018 ◽  
Vol 35 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Alejandro Plastina ◽  
Fangge Liu ◽  
Fernando Miguez ◽  
Sarah Carlson

AbstractDespite being generally accepted as a promising conservation practice to reduce nitrate pollution and promote soil sustainability, cover crop adoption in Midwestern US agriculture is low. Based on focus groups, surveys and partial budgets, we calculated the annual net returns to cover crop use for farmers in Illinois, Iowa and Minnesota; and elicited farmers’ perceptions about the pros and cons of incorporating cover crops to their row cropping systems. The novelty of our methodology resides in comparing each farmer's practices in the portion of their cropping system with cover crops (typically small), against their practices in the other portion of their cropping system without cover crops. The resulting comparisons, accounting for farmer heterogeneity, are more robust than the typical effects calculated by comparing indicators across cover crop users and unrelated non-adopters. Our results highlight the complicated nature of integrating cover crops into the crop production system and show that cover crops affect whole farm profitability through several channels besides establishment and termination costs. Despite farmers’ positive perceptions about cover crops and the availability of cost-share programs, calculated annual net returns to cover crops use were negative for most participants.


Sign in / Sign up

Export Citation Format

Share Document