scholarly journals Impact of Cover Crops on the Soil Microbiome of Tree Crops

2020 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
Sarah L. Strauss

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.

Agriculture ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 225 ◽  
Author(s):  
Samuel I. Haruna ◽  
Nsalambi V. Nkongolo

Cover cropping, tillage and crop rotation management can influence soil nutrient availability and crop yield through changes in soil physical, chemical and biological processes. The objective of this study was to evaluate the influence of three years of cover crop, tillage, and crop rotation on selected soil nutrients. Twenty-four plots each of corn (Zea mays) and soybean (Glycine max) were established on a 4.05 ha field and arranged in a three-factor factorial design. The three factors (treatments) were two methods of tillage (no-tillage (NT) vs. moldboard plow [conventional] tillage (CT)), two types of cover crop (no cover crop (NC) vs. cover crop (CC)) and four typess of rotation (continuous corn, continuous soybean, corn/soybean and soybean/corn). Soil samples were taken each year at four different depths in each plot; 0–10 cm, 10–20 cm, 20–40 cm and 40–60 cm, and analyzed for soil nutrients: calcium (Ca), magnesium (Mg), nitrogen (NO3 and NH4), potassium (K), phosphorus (P), sulfur (S), sodium (Na), iron (Fe), manganese (Mn) and copper (Cu). The results in the first year showed that CT increased NO3-N availability by 40% compared with NT. In the second year, NH4-N was 8% lower under CC compared with NC management. In the third year, P was 12% greater under CC management compared with NC management. Thus, CC can enhance crop production systems by increasing P availability and scavenging excess NH4-N from the soil, but longer-term studies are needed to evaluate long-term effects.


1989 ◽  
Vol 4 (2) ◽  
pp. 75-83 ◽  
Author(s):  
William Lockeretz

AbstractI reexamined five previously published studies that compared the economics of high input conventional crop production systems in various regions to the economics of lower input alternatives that use green manures, cover crops, and more diversified rotations, but no inorganic fertilizers and little or no synthetic pesticides. The original analyses were extended to include estimates of each production system's contribution to the local economy, both directly through farmers' payments for labor and interest, and indirectly through the payrolls and profits of enterprises serving farmers. A similar comparison was also made for high input irrigated and lower input nonirrigated corn production. On a per acre basis, the high input systems' local economic benefits were equal to or greater than those of the lower input systems. However, they were lower as a fraction of total value of production in all but one case, since production was always higher for the higher input systems. Correspondingly, with all but one of the higher input systems, a greater portion of the value of production left the local economy to pay for purchased inputs. This becomes significant if the production system is not sustainable, so that the total productive potential of the area's agricultural resources is finite when integrated over their entire economic life. In such circumstances, the results imply that under the conventional system the local economy will capture a smaller share of the total productive value of those resources.


Weed Science ◽  
1980 ◽  
Vol 28 (6) ◽  
pp. 661-666 ◽  
Author(s):  
O. C. Burnside ◽  
G. A. Wicks

Atrazine [2-chloro-4-(ethylamino)-6-isopropylamino)-s-triazine] carryover under reduced or no-till row crop production systems was measured by planting oats (Avena sativaL.) the following year as a field bioassay during 1970 through 1976 at Lincoln and North Platte, Nebraska. Oat yields indicate that soil persistence of normal-use rates of atrazine into the subsequent year is only a minor residue problem under reduced tillage cropping systems. Atrazine carryover in soil was less of a problem under these reduced tillage systems as compared with prior experiments with conventional tillage systems across Nebraska.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 494e-494
Author(s):  
J.P. Mitchell ◽  
T.S. Prather ◽  
K.J. Hembree ◽  
P.B. Goodell ◽  
D.M. May ◽  
...  

There is currently considerable interest in the use of cover crops to improve the productivity and sustainability of agroecosystems in California. Adoption of cover crops into San Joaquin Valley row cropping systems has been slow, however, largely because growth characteristics of potentially suitable cover crop species and mixtures have not been identified for the tight windows of opportunity that exist within the region's intensive rotations, and because of uncertainy about the amount of water required to grow a cover crop. In 1995–96 and 1997–98, we screened 15 potential late-summer and winter cover crop species and mixtures planted monthly from 1 Aug. through 1 Nov. and harvested at 30-day intervals through March. In 1995–96, Sorghum-sudan produced 36,543 lb dry matter/acre and was the highest-producing late-summer species in a December-harvested August planting. Triticale and Merced rye were highest-producing winter species, yielding 19,277 and 10,155 lb dry weight/acre, respectively, during the 5-month period from October to March.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2017 ◽  
Vol 32 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Stephen B. Powles

AbstractIn Australia, widespread evolution of multi-resistant weed populations has driven the development and adoption of harvest weed seed control (HWSC). However, due to incompatibility of commonly used HWSC systems with highly productive conservation cropping systems, better HWSC systems are in demand. This study aimed to evaluate the efficacy of the integrated Harrington Seed Destructor (iHSD) mill on the seeds of Australia’s major crop weeds during wheat chaff processing. Also examined were the impacts of chaff type and moisture content on weed seed destruction efficacy. Initially, the iHSD mill speed of 3,000 rpm was identified as the most effective at destroying rigid ryegrass seeds present in wheat chaff. Subsequent testing determined that the iHSD mill was highly effective (>95% seed kill) on all Australian crop weeds examined. Rigid ryegrass seed kill was found to be highest for lupin chaff and lowest in barley, with wheat and canola chaff intermediate. Similarly, wheat chaff moisture reduced rigid ryegrass seed kill when moisture level exceeded 12%. The broad potential of the iHSD mill was evident, in that the reductions in efficacy due to wide-ranging differences in chaff type and moisture content were relatively small (≤10%). The results from these studies confirm the high efficacy and widespread suitability of the iHSD for use in Australian crop production systems. Additionally, as this system allows the conservation of all harvest residues, it is the best HWSC technique for conservation cropping systems.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-9
Author(s):  
Alan J Schlegel ◽  
Yared Assefa ◽  
Daniel O’Brien

Abstract. Selection of optimal crops and cropping systems for most efficient water use specific for local environments can improve global water security. Limited irrigation with ground water is one alternative to alleviate crops from low amount or unevenly distributed water in the growing seasons in semi-arid regions. The main objectives of this research were to quantify yield-water use relationships of three limited irrigated crops, determine effect of crop selection on profitability with limited irrigation, and identify profitable and alternative crop production systems. A field study was conducted at the Kansas State University Southwest Research-Extension Center near Tribune, Kansas, from 2012 through 2017. There were four treatments in the study, two 1-yr systems of continuous corn ( L.) (C-C) and continuous grain sorghum (L.) (GS-GS) and two 2-yr rotations of corn-grain sorghum (C-GS) and corn-winter wheat ( L.) (C-W). Overall corn yield after wheat (C-W) was about 1.4 Mg (ha)-1 greater than C-C. Corn and sorghum yields were similar grown as monoculture or in rotation with each other. Available soil water at corn planting and during the growing season were 20 to 40 mm (240 cm profile-1) less in the C-GS rotation compared with C-C and C-W rotations. Corn yield increased as water use (yield-water use) increased in C-W rotation but yield-water use relationships tended to be negative in C-C and C-GS rotations. Grain sorghum yield increased with water use in both rotations but at a greater rate in GS-GS compared with C-GS. Despite greater corn grain yield in C-W, our economic analysis showed that wheat was the least profitable of the three crops causing the C-W rotation to be least profitable. In this study, the most profitable limited irrigation crop rotation was corn-grain sorghum (C-GS). Keywords: Corn-sorghum-wheat, Crop rotation, Limited irrigation, Profitability, Supplementary irrigation, Sustainability.


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 47
Author(s):  
Huan Zhang ◽  
Markus Flury ◽  
Carol Miles ◽  
Hang Liu ◽  
Lisa DeVetter

Soil-biodegradable plastic mulches (BDMs) are made from biodegradable materials that can be bio-based, synthetic, or a blend of these two types of polymers, which are designed to degrade in soil through microbial activities. The purpose of BDMs is to reduce agricultural plastic waste by replacing polyethylene (PE) mulch, which is not biodegradable. Most studies have evaluated the breakdown of BDMs within annual production systems, but knowledge of BDM breakdown in perennial systems is limited. The objective of this study was to evaluate the deterioration and degradation of BDMs in a commercial red raspberry (Rubus ideaus L.) production system. Deterioration was low (≤11% percent soil exposure; PSE) for all mulches until October 2017 (five months after transplanting, MAT). By March 2018 (10 MAT), deterioration reached 91% for BDMs but remained low for PE mulch (4%). Mechanical strength also was lower for BDMs than PE mulch. In a soil burial test in the raspberry field, 91% of the BDM area remained after 18 months. In-soil BDM degradation was minimal, although the PSE was high. Since mulch is only applied once in a perennial crop production system, and the lifespan of the planting may be three or more years, it is worth exploring the long-term degradation of BDMs in perennial cropping systems across diverse environments.


2020 ◽  
Vol 12 (15) ◽  
pp. 6103
Author(s):  
Ali reza Safahani Langeroodi ◽  
Roberto Mancinelli ◽  
Emanuele Radicetti

Quinoa cultivation is well-adapted to sustainable cropping systems, even if seed yield could be severely limited due to several constraints, such as weeds. Field trials were performed in Gorgan (Iran) to quantify the effects of agro-ecological service crops (rye, CCr; winter vetch, CCw; and no cover, CC0), tillage regimes (conventional tillage, CT; and no-tillage, ZT), and herbicide rates (100% rate, H100; 75% rate, H75; and without herbicide, H0). Weed characteristics and quinoa yield were measured. Quinoa seed yield was the highest in CCw-ZT-H100. Seed yield in H100 and H75 were higher compared with H0 (2.30 vs. 1.58 t ha−1, respectively). Under conventional tillage, 46% of weed seeds were observed in the 0–10 cm soil layer and 54% in 10–20 cm soil layers, respectively, while, under no-tillage, about 63% of weed seeds were located up to 10 cm of soil. Amaranthus retroflexus L. was the most abundant species. The total weed density was the lowest in CCr-ZT-H100 and tended to be higher in CC0 (30.9 plant m−2) and under CT (29.0 plant m−2). These findings indicate that cover crops have potential for managing weeds in quinoa; however, their inclusion should be supported by chemical means to maintain high seed.


Sign in / Sign up

Export Citation Format

Share Document