scholarly journals (110) Suppression Subtractive Hybridization (SSH) Analysis for Detecting Genes Involved in Condensed Tannin Accumulation in Persimmon Fruit

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1040B-1040
Author(s):  
Keizo Yonemori ◽  
Junya Yoshida ◽  
Ayako Ikegami ◽  
Akihiko Sato ◽  
Masahiko Yamada ◽  
...  

Pollination-constant and non-astringent (PCNA)-type persimmon has probably originated from astringent (non-PCNA)-type as a mutant that terminates condensed tannin accumulation at an early stage of fruit development. This trait is confirmed to be recessive and is controlled by a single locus. Since PCNA-type fruit stops tannin accumulation at an early stage, comparison of the gene expressions between PCNA- and non-PCNA-type will reveal the genes conferring condensed tannin accumulation in persimmon fruit. We performed suppression subtractive hybridization (SSH) analysis for detecting differentially expressed genes in non-PCNA-type fruit using BC1 offspring from a cross between PCNA `Fuyu' and non-PCNA “275-13” (F1 progeny derived from non-PCNA `Aizumishirazu' × PCNA `Taishu'). Fruits from seven individuals of PCNA or non-PCNA offspring in BC1 were sampled at early two stages of fruit development and total RNA was extracted by hot borate method from each fruit of different stage. Then, RNA was pooled as PCNA or non-PCNA bulk at two stages and cDNA was synthesized from each bulk for SSH analysis. A total of 5000 clones expressed differentially in non-PCNA-type fruit were picked from SSH library of two stages and 198 positive clones confirmed by differential screening were sequenced. The homologous sequences for the genes involved in flavonoid biosynthesis (CHS, CHI, F3H, F3'5'H, DFR, UFGT, and ANS) were obtained from the clones. The genes that are not considered to be involved in flavonoid biosynthesis so far (SCPL and DHQ) were also detected with high frequencies. We will discuss the role of these genes for condensed tannin accumulation in persimmon fruit.

2005 ◽  
Vol 130 (6) ◽  
pp. 830-835 ◽  
Author(s):  
Ayako Ikegami ◽  
Keizo Yonemori ◽  
Akira Kitajima ◽  
Akihiko Sato ◽  
Masahiko Yamada

Expression patterns of the genes involved in condensed tannin (CT) biosynthesis during fruit development was investigated in a Chinese pollination-constant, nonastringent (PCNA) persimmon (Diospyros kaki Thunb.) `Luo Tian Tian Shi'. The transcript levels of phenylalanine ammonia-lyase (PAL) and dihydroflavonol reductase (DFR) in `Luo Tian Tian Shi' were detected at high levels throughout the fruit growth. Chalcone synthase (CHS) and flavonol 3-hydroxylase (F3H) also continued to be transcribed during fruit growth, although their levels decreased earlier than PAL and DFR. In contrast, expression levels of these genes declined into undetectable levels at an early stage of fruit development in Japanese PCNA persimmon. In addition, anthocyanidin reductase (ANR), which encodes a key enzyme of the proanthocyanidin biosynthesis, was transcribed at high levels in `Luo Tian Tian Shi' during fruit growth, but not in Japanese PCNA persimmon. By contrast, the expression of D. kaki serine carboxypeptidase-like protein 1 (DkSCPL1) that was obtained from suppression subtractive hybridization (SSH) analysis between artificially astringency-removed fruit and astringent fruit in a different experiment, declined earlier than the other flavonoid biosynthesis genes in `Luo Tian Tian Shi', coincident with the termination of the tannin cell development. In the F1 progeny of the cross between `Luo Tian Tian Shi' and Japanese PCNA `Taishu', similar expression patterns were obtained among segregated PCNA and astringent offspring. These results indicate that Chinese PCNA is different from Japanese PCNA in expression of the genes involved in CT biosynthesis. In conclusion, we clarified that expression of the genes (PAL to ANR, but not SCPL) involved in flavonoid biosynthesis was continuous in the Chinese PCNA cultivar, despite the termination of tannin cell development.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Michelle A. R. Freitas ◽  
Ângela C. Alvarenga ◽  
Helen C. Fernandes ◽  
Frederico F. Gil ◽  
Maria N. Melo ◽  
...  

Entamoeba histolyticais a parasite which presents capacity to degrade tissues and therefore has a pathogenic behavior. As this behavior is not shown by all strains, there have been several studies investigating molecular basis of the cytotoxicity process. Using the suppression subtractive hybridization (SSH) technique, differential gene expressions of twoE. histolyticastrains, one virulent (EGG) and one nonvirulent (452), have been analyzed with the purpose of isolating genes which may be involved with amoebic virulence. Nine cDNA fragments presenting high homology withE. histolyticapreviously sequenced genes were subtracted. Of these, four genes were confirmed by RT-PCR. Two coding for hypothetical proteins, one for a cysteine-rich protein, expressed only in the virulent strain, EGG and another one, coding for grainin 2 protein, exclusive from 452 strain. This study provided new insight into the proteins differences in the virulent and nonvirulentE. histolyticastrains. We believe that further studies with these proteins may prove association of them with tissue damage, providing new perceptions to improve treatment or diagnosis of the invasive disease.


2015 ◽  
Vol 143 (2) ◽  
pp. 536-562 ◽  
Author(s):  
Robert F. Rogers ◽  
Paul D. Reasor ◽  
Jun A. Zhang

Abstract The structure and evolution of Hurricane Earl (2010) during its rapid intensification as sampled by aircraft is studied here. Rapid intensification occurs in two stages. During the early stage, covering ~24 h, Earl was a tropical storm experiencing moderate northeasterly shear with an asymmetric distribution of convection, and the symmetric structure was shallow, broad, and diffuse. The upper-level circulation center was significantly displaced from the lower-level circulation at the beginning of this stage. Deep, vigorous convection—termed convective bursts—was located on the east side of the storm and appeared to play a role in positioning the upper-level cyclonic circulation center above the low-level center. By the end of this stage the vortex was aligned and extended over a deep layer, and rapid intensification began. During the late stage, rapid intensification continued as Earl intensified ~20 m s−1 during the next 24 h. The vortex remained aligned in the presence of weaker vertical shear, although azimuthal asymmetries persisted that were characteristic of vortices in shear. Convective bursts concentrated near the radius of maximum winds, with the majority located inside the radius of maximum winds. Each of the two stages described here raises questions about the role of convective- and vortex-scale processes in rapid intensification. During the early stage, the focus is on the role of convective bursts and their associated mesoscale convective system on vortex alignment and the onset of rapid intensification. During the late stage, the focus is on the processes that explain the observed radial distribution of convective bursts that peak inside the radius of maximum winds.


2012 ◽  
Vol 39 (4) ◽  
pp. 351 ◽  
Author(s):  
Kai Ji ◽  
Pei Chen ◽  
Liang Sun ◽  
Yanping Wang ◽  
Shengjie Dai ◽  
...  

To study the role of ABA in development and ripening of strawberry fruit, two ABA key synthetase genes FaNCED1, FaNCED2 and one ABA key degradation enzyme gene FaCYP707A1 were cloned from strawberry cultivar ‘Ablion’. The three genes and putative amino acid sequences, respectively, had high similarities with their homologues in other plants. In strawberry pulp, expression of FaNCED2 rose in two stages that corresponded with increases in ABA levels. The expression of FaNCED1 was much lower and increased continually. The expression of FaCYP707A1 increased as fruit changed from bright green to white, then decreased as it ripened. Auxin reduced expression of these three genes. Analysis of expression of these genes in different organs and tissues showed that FaNCED2 was abundant in mature achenes and the pulp (receptacle) had high expression of FaNCED1 and FaCYP707A1. ABA may play a regulation role in strawberry fruit development and ripening. The content of ABA was regulated by its key synthetase gene NCED2 and degradation gene CYP707A1.


Sign in / Sign up

Export Citation Format

Share Document