scholarly journals Preharvest 1-Methylcyclopropene Delays Fruit Maturity and Reduces Softening and Superficial Scald of Apples During Long-term Storage

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 366-371 ◽  
Author(s):  
Steve J. McArtney ◽  
John D. Obermiller ◽  
James R. Schupp ◽  
Michael L. Parker ◽  
Todd B. Edgington

Three experiments were undertaken to evaluate the effects of different preharvest 1-methylcyclopropene (1-MCP) spray treatments on apple (Malus × domestica Borkh.) fruit maturity at harvest and quality after long-term storage in a regular atmosphere or controlled atmosphere (CA). Trees were sprayed within 7 days of the anticipated harvest date (H) and fruit for long-term storage were sampled at either H in the case of ‘Law Rome’ or at harvest dates that were delayed by up to 21 days (H + 21) in the case of ‘Golden Delicious’ and ‘Law Rome’. Preharvest 1-MCP sprays within 7 days of H reduced fruit drop, internal ethylene concentration, and starch index and reduced firmness loss during long-term storage of fruit at delayed harvest dates but had only minor effects on fruit maturity at H. Preharvest 1-MCP sprays reduced the incidence of superficial scald on ‘Law Rome’ apples more effectively than either diphenylamine or CA storage. Application of 1-MCP within 7 days of H may be used to delay harvest date, thereby allowing continued fruit growth without a concomitant advance in fruit maturity and to reduce firmness loss and superficial scald during long-term storage both for normal and delayed harvests.

2020 ◽  
Vol 5 (5) ◽  
pp. 234-243
Author(s):  
Wenhui Wang ◽  
◽  
Yunbin Jiang ◽  
Zhihua Wang ◽  
Huangping Guo ◽  
...  

The effect of production area and harvest date on the superficial scald incidence, ultra-structure of the pericarp, core browning, and related physical qualities of ‘Suli’ pears during storage period at 0 °C were investigated. ‘Suli’ fruits were harvested at Taigu and Linyi in Shanxi province of China over five different dates and then stored at 0±0.5 °C with 85-90% relative humidity for 120 or 200 days. Superficial scald was detected after 120 and 200 days of storage. Harvest date and production area significantly affected the incidence of superficial scald and the quality of 'Suli' fruits. Earlier harvest time was associated with increased incidence of superficial scald. Fruits picked at Linyi developed more severe superficial scald than fruits harvested at Taigu. Scanning electron microscope (SEM) revealed that the cuticle and wax layer of fruits from Taigu were thicker than those from Linyi after storage. The surface of earlier harvested fruits had less wax and more extensive cracking, lower pectin content, and damaged skin organization structure. The incidence of superficial scald in ‘Suli’ pears is dependent on the ultra-structure of these superficial layers, and differences may be driven by harvest date and location. Keywords: Production area, Harvest date, Superficial scald incidence, Ultra-structure, ‘Suli’ pear


Author(s):  
Eelke H. Westra ◽  
Jan Verschoor ◽  
Charles Buddendorf ◽  
Romina Pedreschi

2016 ◽  
Vol 141 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Yan Wang

Alternatives to ethoxyquin (Etq) are needed for controlling superficial scald of ‘Anjou’ european pears (Pyrus communis) during long-term storage. The current commercial standard storage conditions [Etq + −1 °C + controlled atmosphere (CA) with 1.5 kPa O2] reduced scald occurrence compared with control fruit (−1 °C + CA) during 6–8 months storage. At 1 °C in air, 1-methylcyclopropene (1-MCP) fumigation at 0.15 µL·L−1 at harvest was more efficient on reducing scald than Etq but did not prevent scald during 6–8 months storage. The 1-MCP-treated fruit at 1 °C in air developed their ripening capacity at 20 °C following 6–8 months storage but had deceased shipping ability (softening and yellowing of fruit). Although Etq inhibition of scald was associated with the inhibition of α-farnesene oxidation to conjugated trienols (CTols); 1-MCP reduced α-farnesene synthesis and thereby the availability of substrate to oxidize to CTols. CA storage at 1.5 kPa O2 totally prevented scald and retarded the loss of shipping ability without affecting the ripening capacity of 1-MCP-treated fruit at 1 °C through further decreases in the syntheses of ethylene, α-farnesene and CTols during 6–8 months storage. In addition, 1-MCP prevented a CA-induced disorder, pithy brown core (PBC), in ‘Anjou’ pears possibly through enhancing an oxidative/reductive metabolic balance during extended storage. In conclusion, the combinations of 1 °C + 1-MCP + CA is a potential commercial alternative to Etq for scald control while allowing the 1-MCP-treated ‘Anjou’ pears to recover ripening capacity during the shelf life period after 6–8 months storage.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 491
Author(s):  
Tatenda Gift Kawhena ◽  
Olaniyi Amos Fawole ◽  
Umezuruike Linus Opara

The efficacy of dynamic controlled atmosphere technologies; repeated low oxygen stress (RLOS) and dynamic controlled atmosphere-chlorophyll fluorescence (DCA-CF) to control superficial scald development on ‘Granny Smith’ apples during long-term storage was studied. Fruit were stored for 2, 4, 6, 8, and 10 months at 0 °C in DCA-CF (0.6% O2 and 0.8% CO2), regular atmosphere (RA)(≈21% O2 and 90–95% RH), and RLOS treatments: (1) 0.5% O2 for 10 d followed by ultra-low oxygen (ULO) (0.9% O2 and 0.8% CO2) for 21 d and 0.5% O2 for 7 d or (2) 0.5% O2 for 10 d followed by controlled atmosphere (CA) (1.5% O2 and 1% CO2) for 21 d and 0.5% O2 for 7 d. Development of superficial scald was inhibited for up to 10 months and 7 d shelf life (20 °C) under RLOS + ULO and DCA-CF treatments. Apples stored in RLOS + ULO, RLOS + CA, and DCA-CF had significantly (p < 0.05) higher flesh firmness and total soluble solids. The RLOS phases applied with CA or ULO and DCA-CF storage reduced the development of superficial scald by possibly suppressing the oxidation of volatiles implicated in superficial scald development.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 409C-409 ◽  
Author(s):  
Jennifer R. DeEll ◽  
H.P. Vasantha Rupasinghe ◽  
Dennis P. Murr

`Cortland' is an apple cultivar with inherent poor storeability because of excessive vulnerability to the development of superficial scald in long-term storage. The objectives of this investigation were to evaluate the potential of the potent ethylene action inhibitor 1-methylcyclopropene (1-MCP; EthylBloc®) to counteract this constraint and to develop some basic procedures for its exposure. Eight hours after harvest, fruit were exposed to 1.0 mL·L–1 1-MCP for 0, 3, 6, 9, 12, 16, 24, or 48 h at 3, 13, or 23 °C. Following exposure, fruit were placed at 0 to 1 °C in air for 120 days, after which time they were removed to 20 °C and held 7 days for post-storage assessment of ripening and to allow development of physiological disorders. In general, and within our experimental limits, the higher the temperature of 1-MCP exposure the shorter the required exposure time to obtain similar effects. The desired effectiveness of 1-MCP could be achieved by exposing fruit for at least 3 h at 23 °C, for 6 h at 13 °C, or for 9 h at 3 °C. 1-MCP-treated apples were consistently 2 kg firmer than untreated apples. Scald incidence in untreated fruit after 120 days at 0 to 1 °C and 7 days at 20 °C was 100%, whereas 1-MCP reduced scald by 95% in treatments of long enough duration at any particular temperature.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Rongcai Yuan ◽  
David H. Carbaugh

Effects of naphthaleneacetic acid (NAA), aminoethoxyvinylglycine (AVG), and 1-methylcyclopropene (1-MCP) alone or in combination on fruit ethylene production, preharvest fruit drop, fruit quality, and fruit maturation were examined in ‘Golden Supreme’ and ‘Golden Delicious’ apples (Malus ×domestica Borkh.). In ‘Golden Supreme’ apples, the combination of two applications of AVG and one application of NAA 3 and 1 week, respectively, before the anticipated optimum harvest date synergistically inhibited fruit ethylene production and delayed fruit drop and ripening. Compared with one or two applications of AVG, the combination of one application of AVG and two applications of NAA had much lower preharvest fruit drop, although there was no significant difference in fruit ethylene production among these treatments. In ‘Golden Delicious’ apples, 1-MCP at 396 mg·L−1 had a better effect in delaying fruit drop than did AVG at 125 mg·L−1 or NAA at 20 mg·L−1 when they were applied a week before the optimum harvest date. The combination of NAA and 1-MCP or AVG was more effective in delaying fruit drop than were NAA, 1-MCP, or AVG alone. Fruit ethylene production was inhibited by 1-MCP and AVG but not by NAA. 1-MCP and AVG delayed fruit ripening, whereas NAA increased fruit ripening as determined by fruit firmness and starch.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Sign in / Sign up

Export Citation Format

Share Document