scholarly journals Use of Switchgrass as a Nursery Container Substrate

HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1861-1865 ◽  
Author(s):  
James E. Altland ◽  
Charles Krause

Loblolly pine (Pinus taeda L.) bark is the primary component of nursery container substrates in the eastern United States. Shortages in pine bark prompted investigation of alternative substrates. The objective of this research was to determine if ground switchgrass (Panicum virgatum L.) could be used for short production-cycle woody crops. Two experiments were conducted using ‘Paprika’ rose (Rosa L. ‘ChewMayTime’) potted in 15-cm tall and wide containers. In Expt. 1, substrates were composed of coarse-milled switchgrass (processed in a hammermill with 1.25- and 2.5-cm screens) amended with 0%, 30%, or 50% peatmoss and fertilized with 100, 250, or 400 mg·L−1 nitrogen (N) from ammonium nitrate. In Expt. 2, substrates were composed of coarse-milled (similar to Expt. 1) or fine-milled switchgrass (processed through a single 0.48-cm screen), amended with 0% or 30% peatmoss, and fertilized with the same N rates as in Expt. 1. Summarizing across both experiments, coarse switchgrass alone had high air space and low container capacity. Fine switchgrass had physical properties more consistent with what is considered normal for nursery container substrates. Switchgrass pH was generally high and poorly buffered against change. Fine switchgrass had higher pH than coarse switchgrass. Tissue analysis of rose grown in switchgrass substrate for 7 to 9 weeks revealed low to moderate levels of calcium and iron, but all other nutrients were within acceptable ranges. Despite varying substrate physical properties and pH levels, all roses at the conclusion of the experiment were of high quality. Switchgrass processed to an appropriate particle size and amended with typical nursery materials should provide a suitable substrate for short production-cycle woody crops.

Holzforschung ◽  
1999 ◽  
Vol 53 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Todd F. Shupe ◽  
Chung Y. Hse ◽  
Elvin T. Choong ◽  
Leslie H. Groom

Summary The objective of this study was to determine the effect of five different silvicultural strategies and wood type on mechanical and physical properties of loblolly pine (Pinus taeda L.) particleboard and fiberboard. The furnish was prepared in an unconventional manner from innerwood and outerwood veneer for each stand. Modulus of rupture (MOR) differences between the stands were insignificant for particleboard. Some significant modulus of elastisity (MOE) differences existed between the stands for particleboard and fiberboard. Differences between the wood types were minimal for each stand. Innerwood yielded higher mean MOR, MOE, and internal bond (IB) values than outerwood for most of the stands. The differences between the stand and wood types for 2 and 24 h thickness swell and 2 and 24h water adsorption were very minimal. This research has shown that innerwood can produce particleboard and fiberboard panels with very comparable mechanical and physical properties to outerwood. The effect of the silvicultural strategy (i. e., stand) was minimal for most properties.


1990 ◽  
Vol 14 (1) ◽  
pp. 18-24
Author(s):  
W. Henry McNab ◽  
Thomas Miller ◽  
Ernst V. Brender

Abstract Cutover pine-hardwood sites in the Piedmont of central Georgia were prepared by prescribed burning or drum chopping and regenerated to loblolly pine (Pinus taeda L.) by planting or direct-seeding. Site preparation had little effect on soil physical properties. After an average of 12 years, trees were larger in dbh and total height, the merchantable stand was greater, and distribution was more uniform on planted than on seeded areas. Regeneration from direct-seeding was enhanced more by intensive site preparation than was regeneration from planting. Neither fusiform rust incidence nor rust associated mortality was affected consistently by the intensity of site preparation, but both rust incidence and rust associated mortality were generally higher in the direct-seeded than in the planted plots. South. J. Appl. For. 14(1):18-24.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 321-330 ◽  
Author(s):  
Mitchell M Sewell ◽  
Bradley K Sherman ◽  
David B Neale

Abstract A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation outbred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent populations of parental meioses, and genetic maps were constructed to represent each parent. The rate of meiotic recombination was significantly greater for males than females, as was the average estimate of genome length for males {1983.7 cM [Kosambi mapping function (K)]} and females [1339.5 cM(K)]. The integration of individual maps allows for the synthesis of genetic information from independent sources onto a single consensus map and facilitates the consolidation of linkage groups to represent the chromosomes (n = 12) of loblolly pine. The resulting consensus map consists of 357 unique molecular markers and covers ∼1300 cM(K).


2021 ◽  
Vol 491 ◽  
pp. 119176
Author(s):  
Michael A. Blazier ◽  
Thomas Hennessey ◽  
Laurence Schimleck ◽  
Scott Abbey ◽  
Ryan Holbrook ◽  
...  

1998 ◽  
Vol 22 (4) ◽  
pp. 222-226 ◽  
Author(s):  
W. Michael Aust ◽  
James A. Burger ◽  
William H. McKee ◽  
Gregory A. Scheerer ◽  
Mark D. Tippett

Abstract Wet-weather harvesting operations on wet pine fiats can cause soil disturbances that may reduce long-term site productivity. Site preparation and fertilization are often recommended as ameliorative practices for such disturbances, but few studies have actually quantified their effects on restoration. The purposes of this study were to quantify the effects of wet-weather harvest traffic in designated skid trails on soil properties and loblolly pine (Pinus taeda) growth, and to evaluate the ameliorative effects of site preparation. Study sites were established on wet pine flats of the lower Coastal Plain within the Francis Marion National Forest (Berkeley County, SC). Treatments were arranged in a split-split plot within a randomized complete block design. Treatments were two levels of traffic (nontrafficked, trafficked), four levels of mechanical site preparation (none, disking, bedding, disking + bedding), and two levels of fertilization (none, 337 kg /ha of 10-10-10 fertilizer). initially, the trafficking increased soil bulk densities and reduced soil water movement and subsequent growth of loblolly pine (years 1 and 2). Bedding combined with fertilization restored site productivity to non trafficked levels within 4 yr, but disking or fertilization treatments alone were not effective at ameliorating the traffic effects. The effectiveness of the bedding and fertilization treatments for amelioration of traffic effects was probably facilitated by the relatively small area of disturbed skid trails (<10%) found on these sites. Areas having more severe disturbance or higher percentages of disturbance might not be ameliorated as rapidly. South. J. Appl. For. 22(4):222-226.


1997 ◽  
Vol 21 (3) ◽  
pp. 116-122 ◽  
Author(s):  
Thomas A. Waldrop

Abstract Four variations of the fell-and-burn technique, a system developed to produce mixed pine-hardwood stands in the Southern Appalachian Mountains, were compared in the Piedmont region. All variations of this technique successfully improved the commercial value of low-quality hardwood stands by introducing a pine component. After six growing seasons, loblolly pine (Pinus taeda L.) occupied the dominant crown position and oaks the codominant position in fell-and-burn treated stands on poor to medium quality sites. The precise timing of felling residual stems, as prescribed by the fell-and-burn technique, may be flexible because winter and spring felling produced similar results. Although summer site preparation burns reduced hardwood height growth by reducing the length of the first growing season, they did not improve pine survival or growth. Pines were as tall as hardwoods within four growing seasons in burned plots and within six growing seasons in unburned plots. Additional research is needed to determine the level or intensity of site preparation needed to establish pine-hardwood mixtures over a range of site conditions. South. J. Appl. For. 21(3):116-122.


Sign in / Sign up

Export Citation Format

Share Document