scholarly journals Effects of Distillation Time on the Pinus ponderosa Essential Oil Yield, Composition, and Antioxidant Activity

HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 785-789 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie ◽  
Vicki Schlegel

This study evaluated the effect of distillation time (DT; 1.25, 2.5, 5, 10, 20, 40, 80, 160, 240, and 360 min) on essential oil yield, composition, and the antioxidant activity of ponderosa pine essential oil. Pine essential oil yield increased with length of the DT and reached maximum at 160 min DT. The major oil constituents were alpha-pinene and beta-pinene, ranging from 17% to 40% and from 21% to 29%, respectively, of the total oil. Overall, the concentration of alpha-pinene and beta-pinene was high at the initial DT (5–20 min) and decreased with increasing DT. The concentration of myrcene (range, 0.9% to 1.5%) was lowest at 5 min DT, then increased at 10 min DT, and did not change with longer DT. Overall, the concentrations of most other constituents (delta-3-carene, limonene, cis-ocimene, alpha-terpinyl acetate, germacrene-D, alpha-muurolene, gamma-cadinene, delta-cadinene, and germacrene-D-4-ol) were low at the initial DT and increased with increasing DT. Total yields (a function of oil yield and the concentration of individual constituents) of all constituents were generally the lowest at 5 min DT, increased with increasing DT, and reached maximum at 160 min DT. The antioxidant capacity of the pine oil in this study varied between 7.0 and 14.5 μmole Trolox/g and was unaffected by DT. This study demonstrated that DT can significantly modify the essential oil yield and composition of ponderosa pine needles. Furthermore, DT could be used to obtain pine oil with targeted chemical profiles. This report can also be used as a reference point for comparing literature reports, in which different DTs are used to extract essential oil of ponderosa pine.

HortScience ◽  
2013 ◽  
Vol 48 (11) ◽  
pp. 1393-1396 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie ◽  
Barry O'Brocki ◽  
Ekaterina Jeliazkova

Anise (Pimpinella anisum L.) is a spice, an essential oil crop, and a medicinal plant with a long history of use. Anise seed oil is extracted from anise seed through steam distillation. There is no experimentally established optimal time for distillation of anise seed. We hypothesized that the distillation time (DT) can be customized for optimum yield and composition of anise essential oil. In this study, we determined the effect of nine steam DTs (5, 15, 30, 60, 120, 180, 240, 360, and 480 minutes) on essential oil yield and essential oil composition of anise seed. We developed regression models to predict essential oil yield, the concentration of individual constituents, and the yield of these constituents as a function of DT. Highest essential oil yield (2.0 g/100 g seed, 2%) was obtained at 360-minute DT. The concentration of transanethole, the major anise oil constituent, varied from 93.5% to 96.2% (as a percent of the total oil) and generally was high at 15- to 60-minute DT and low at 240- to 480-minute DT. However, the yield of transanethole (calculated from the essential oil yield and the concentration of transanethole in the oil) increased with increasing DT to reach maximum at 360-minute DT. The concentration of the other oil constituents varied significantly depending on the DT, and some of them were higher at the shorter DT than at the longer DT. However, the yields of these constituents were highest at longer DT (either 360 or 480 minutes). DT can be used to obtain anise essential oil with different composition that would benefit the essential oil industry. This study demonstrated the need for providing DT in reports where anise seed essential oil yield and composition are discussed. This article can also be used as a reference point for comparing studies in which different DTs were used to extract essential oil from anise seed.


2015 ◽  
Vol 13 (1) ◽  
pp. 59-66
Author(s):  
Shweta Singh ◽  
Mahesh Pal ◽  
Anil Kumar ◽  
S.K. Sharma ◽  
Shri Tewari

Herein, for the first time, the influence of salt-induced stress on the vegetative growth and the volatile profile of Curcuma longa L. leaves was investigated. C. longa was grown in a quarter-strength Hoagland?s solution to which NaCl was added to give four final concentrations: 0 (control), 25, 50 or 75 mM NaCl. In the case of the plants grown in the 25 mM NaCl medium, leaf biomass production was the same as in the control experiment, but it decreased significantly at higher salinities (50 mM and 75 mM NaCl). The volatile constituents of the leaves were isolated by hydrodistillation and analyzed by GC and GC/MS. The essential-oil yield (calculated on the basis of dry weight) was 2.0% for the control plants, and increased at low-to-medium NaCl concentrations (2.5% and 2.8% for the 25 and 50 mM NaCl media, respectively). Contrary to that, the essential-oil yield decreased (1.6%) in the case of plants grown in the 75 mM NaCl medium. The major volatile constituents of C. longa leaves were identified as: ?-phellandrene (38.3-42.4%; more than one third of the total oil), terpinene-4-ol (5.6-10.5%), geraniol (5.6-7.9%), p-cymene (5.2-9.6%), ?-thujene (4.5-7.3%), ?-sesquiphellandrene (4.8-6.8%), ?-myrcene (2.6-3.8%) and ?-bisabolol (1.5-2.7%).


HortScience ◽  
2013 ◽  
Vol 48 (10) ◽  
pp. 1288-1292 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie ◽  
Thomas Horgan ◽  
Vicki Schlegel ◽  
Xavier Simonnet

Sweet sagewort, also known as sweet wormwood (Artemisia annua L.), contains essential oil and other natural products. The objective of this study was to evaluate the effect of eight different distillation times (DTs; 1.25 minutes, 2.5 minutes, 5 minutes, 10 minutes, 20 minutes, 40 minutes, 80 minutes, and 160 minutes) on A. annua essential oil and its antioxidant capacity. Highest essential oil yield was achieved at 160-minute DT. The concentration of camphor (8.7% to 50% in the oil) was highest at the shorter DT and reached a minimum at 160-minute DT. The concentration of borneol showed a similar trend as the concentration of camphor. The concentrations of some constituents in the oil were highest at 2.5-minute DT (alpha-pinene and camphene), at 10 minutes (paracymene), at 20 minutes (beta-chamigrene and gamma-himachalene), at 80 minutes [transmuurola-4(15),5-diene and spathulenol], at 80- to 160-minute DT (caryophylene oxide and cis-cadin-4-en-ol), or at 160-minute DT (beta-caryophyllene, transbeta-farnesene, and germacrene-D). The yield of individual constituents reached maximum at 20- to 160-minute DT (camphor) at 80- to 160-minute DT [paracymene, borneol, transmuurola-4(15),5-diene, and spathulenol], or at 160-minute DT (for the rest of the oil constituents). DT can be used to attain A. annua essential oil with differential and possibly targeted specific chemical profile. The highest antioxidant capacity of the oil was obtained at 20-minute DT and the lowest from the oil in the 5-minute DT. This study suggests that literature reports on essential oil content and composition of A. annua could be compared only if the essential oil was extracted at similar DTs. Therefore, DT must be reported when reporting data on essential oil content and composition of A. annua.


HortScience ◽  
2012 ◽  
Vol 47 (5) ◽  
pp. 643-647 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie

Japanese cornmint (Mentha canadensis L.) is a major essential oil crop grown in Asia, South America, and to a limited extent in eastern Europe. Japanese cornmint oil is the only commercially viable source for crystalline menthol. We hypothesized that the length of the distillation time (DT) will have an effect on Japanese cornmint essential oil content and composition. Therefore, the objective was to evaluate the effect of eight DTs (1.25, 2.5, 5, 10, 20, 40, 80, and 160 min) on essential oil content and composition. The essential oil content (0.43% to 1.06% range) reached maximum at 10 min DT; further increase in DT did not significantly increase essential oil content. The concentrations of alpha-pinene (0.14% to 0.76% range), beta-pinene (0.23–0.81), 3-octanal (0.19–0.34), limonene (0.69% to 1.53%), eucalyptol (0.06% to 0.12%), isopulegone (0.42% to 0.56%), and isomenthone (4.4% to 5.7%) were highest at 1.25 to 5 min DT and generally decreased to their respective minimums at 160 min DT. The concentration of menthone (4.3% to 6.3%) was highest at 1.25 min DT, decreased at 2.5 min, and was lowest at 10 to 160 min DT. The concentration of piperitone (0.98% to 1.27%) was lowest at 1.25 min DT and higher at 5 to 40 min DT compared with other DTs. The concentration of menthol (74% to 79%) was low at 1.25 min, then increased at 10 to 80 min DT, and reached a maximum at 160 min DT. Generally, the yield of most individual essential oil constituents was lower at 1.25 min DT relative to the other DT and reached maximum at 10 to 20 min DT. The yield of menthol was low at 1.25 to 2.5 min DT and rose at 5 min to 160 min DT. The results suggest that different DTs can be used to maximize recovery of certain constituents. Also, the results demonstrated that there are no oil yield gains after 20 min DT, which is much lower than the usual distillation time of 60 min or more. This study can be used as a reference when comparing reports in which different DTs were used.


HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 777-784 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie ◽  
Vicki Schlegel

Oregano (Origanum vulgare L.) is an important medicinal, culinary, and essential oil plant. Oregano essential oil is extracted from either leaves or shoots through steam distillation. Researchers and industry in various countries reported different distillation times (DTs) for oregano; however, there are no reports on optimum DT. This study evaluated the effect of DT (1.25, 2.5, 5, 10, 20, 40, 80, 160, 240, 360 min) on essential oil yield, composition, and antioxidant activity of the oregano essential oil. In general, the concentration of the low boiling essential oil constituents (alpha-thujene, alpha-pinene, camphene, l-octen-3-ol, myrcene, alpha-terpinene, paracymene, beta-phellandrene/limonene, gamma-terpinene, cis-sabinene hydrate, terpinolene) were highest at the shortest DT (1.25 or 2.5 min), reduced with increasing DT up to 40 min, and then stayed the same. However, the concentration of the major oil constituent, carvacrol, was lowest at the shortest DT of 1.25 min (18%) and increased steadily with increasing DT up to 40 min, where it leveled at 80% to 82%. The concentration of other higher boiling constituents (borneol, 4-terpineol, beta-bisabolene, beta-caryophylenne) was maximum at 5 to 20 min DT. Maximum yield of the low boiling constituents was achieved at relatively short DT, at ≈20 min DT, and peaked again at 240 min DT. Maximum yields of alpha-terpinene, beta-phellandrene/limonene, and gamma-terpinene were reached at 240 min DT. Maximum yields of paracymene cis-sabinene hydrate, terpinolene, and transsabinene hydrate were also achieved at 240 min DT, but yields at 20 min DT were not different. Yields of borneol, 4-terpinenol, carvacrol, beta-caryophyllene, and beta-bisabolene also were highest at 240 min DT. Distillation time at 20, 80, or 360 min did not alter antioxidant or antimicrobial activity of oregano oil. The relationship between the concentration and yield of the constituents with DT was adequately modeled by the asymptotic and Michaelis-Menten nonlinear regression models, respectively. Results demonstrated that 1) DT can be used to obtain oregano essential oil with differential composition; 2) maximum essential oil yield of steam-distilled oregano leaves could be obtained at 240 min DT; and 3) reports on oregano essential oil yield and composition using different DTs may not be comparable. Results from this study will aid in comparing published reports on oregano essential oil that used different lengths of DT.


2013 ◽  
Vol 25 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie ◽  
Ekaterina A. Jeliazkova ◽  
Adrienne O. Tatman ◽  
Vicki Schlegel

2012 ◽  
Vol 61 (10) ◽  
pp. 537-546 ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Tess Astatkie ◽  
Ekaterina A. Jeliazkova ◽  
Vicki Schlegel

Sign in / Sign up

Export Citation Format

Share Document