scholarly journals Ameliorative Effects of Plant Growth Promoting Bacteria on Water-yield Relationships, Growth, and Nutrient Uptake of Lettuce Plants under Different Irrigation Levels

HortScience ◽  
2015 ◽  
Vol 50 (9) ◽  
pp. 1379-1386 ◽  
Author(s):  
Ustun Sahin ◽  
Melek Ekinci ◽  
Fatih Mehmet Kiziloglu ◽  
Ertan Yildirim ◽  
Metin Turan ◽  
...  

The aim of this study was to determine the effects of selected plant growth-promoting rhizobacteria (PGPR) on some physiological characteristics, plant growth, yield, and plant nutrient content of lettuce grown under different irrigation levels. Field experiments were carried out as split plot based on randomized complete block design with three replications. Three irrigation levels, I1 = 100% (control), I2 = 75%, and I3 = 50% of the field capacity (FC), were determined at the 0–15 cm soil depth by time-domain reflectometry (TDR), as main plots and three levels of bacterial species consisting of no bacterial inoculation (control), Bacillus megaterium TV 6D (B1), Bacillus subtilis TV 12H (B2) as sub plots in 2012 and 2013. Physiological characteristics, plant growth, yield, and plant nutrient content of lettuce was significantly affected by PGPR and irrigation quantities. Results showed that decreasing irrigation quantities significantly decreased the growth, dry and fresh head weight, and yield of lettuce in both years. Moreover, lower irrigation levels caused a decrease in leaf relative water content (LRWC), stomatal conductance (SC), and plant nutrient element content, but an increase electrolyte leakage (EL) and lipid peroxidation [malondialdehyde (MDA)]. However, PGPR inoculations significantly increased the growth, nutrient element content, LRWC, SC, and yield but decreased EL and MDA of lettuce plants grown under lower irrigation levels. The results of the study suggested that PGPR inoculations could alleviate the deleterious effects of lower irrigation conditions on the growth and yield of lettuce plants.

HortScience ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 563-567 ◽  
Author(s):  
Huseyin Karlidag ◽  
Ertan Yildirim ◽  
Metin Turan ◽  
Mucahit Pehluvan ◽  
Figen Donmez

The effect of selected plant growth-promoting rhizobacteria (PGPR) on the growth, chlorophyll content, nutrient element content, and yield of strawberry plants under natural field salinity conditions stress was investigated. Field experiments were conducted using a randomized complete block design with five PGPRs (Bacillus subtilis EY2, Bacillus atrophaeus EY6, Bacillus spharicus GC subgroup B EY30, Staphylococcus kloosii EY37, and Kocuria erythromyxa EY43) and a control (no PGPR) in 2009 and 2010. PGPR inoculations significantly increased the growth, chlorophyll content, nutrient element content, and yield of strawberry plants. PGPR treatments lowered electrolyte leakage of plants under saline conditions. The leaf relative water content (LRWC) of plants rose with bacterial inoculation. All nutrient element contents of leaves and roots investigated were significantly increased with PGPR inoculations with the exception of sodium (Na) and chlorine (Cl). The highest efficiency to alleviate salinity stress on the yield and nutrient uptake of strawberry plants was obtained from EY43 (228 g per plant) and EY37 (225 g per plant) treatment and the yield increasing ratio of plants was 48% for EY43 and 46% for EY 37 compared with the control treatment (154 g per plant). The highest nitrogen (N), potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), copper (Cu), and iron (Fe) concentrations were obtained from EY43 and followed by E6, E37, and E30, and increasing ratio of leaves and root N, P, K, Ca, Mg, S, Mn, Cu, and Fe contents were 22% to 33%, 34% to 8.8%, 89% to 11%, 11.0% to 7.2%, 5.1% to 6.2%, 97% to 65%, 120% to 140%, 300% to 15%, and 111% to 9.0%, respectively. The results of the study suggested that PGPR inoculations could alleviate the deleterious effects of salt stress conditions on the growth and yield of strawberry plants under salinity conditions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8535
Author(s):  
Muhammad Ijaz ◽  
Abdul Sattar ◽  
Ahmad Sher ◽  
Sami Ul-Allah ◽  
Muhammad Zeeshan Mansha ◽  
...  

Sunflower (Helianthus annuus L.), a member of the Asteraceae, is one of the major oilseed crops around the world. Charcoal rot caused by Macrophomina phaseolina (Tassi) Goid is the most damaging disease of sunflowers globally. Fungicides are mostly used to control charcoal rot; however, these cause environmental pollution and pose adverse effects on the ecosystem. Therefore, ecofriendly management options are inevitable for the management of charcoal rot disease. Plant mineral nutrition, the use of plant growth-promoting rhizobacteria and biochar have recently been manipulated for the management of different plant diseases. However, the interactive effects of all these treatments have rarely been tested on charcoal rot suppression in sunflowers. This study assessed the influence of sulfur (0 and 2.25 mg/kg) combined with farmyard manure biochar (2%), NPK (20:20:20 mg/kg) and three different plant growth-promoting rhizobacteria (PGPR) strains on the charcoal rot suppression growth, yield, biochemistry and physiology of sunflower. The PGPR strains included in the study were Bacillus sp. strain MR-1/2 (regarded as PGPR1), Achromobacter sp. strain FB-14 (regarded as PGPR2) and Planomicrobium sp. strain MSSA-10 (regarded as PGPR3). The charcoal rot infestation was induced by inoculating the soil with M. phaseolina, and the impacts of the different treatments were studied on the disease infestation, growth, yield, biochemistry and physiology of sunflowers under 0 and 2.25-mg/kg S application. The results revealed that farmyard manure biochar and Planomicrobium sp. strain MSSA-10 in combination with 2.25-mg/kg S proved effective for the management of charcoal rot disease through regulating the antioxidant enzymes’ activities and strengthening the immune system of sunflower plants. The studied health markers (total chlorophyll content and carotenoids) and stress markers (total protein content, catalase and peroxidase) were significantly altered by the applied treatments under 0 and 2.25-mg/kg S applications. The findings of the experiment indicated that both farmyard manure biochar and Planomicrobium sp. strain MSSA-10, combined with 2.25-mg/kg S, could be used to enhance the crop yield and manage charcoal rot disease in sunflowers. Farmyard manure biochar and Planomicrobium sp. strain MSSA-10 are an easy-to-apply, cost-effective, ecofriendly and sustainable option for the management of charcoal rot disease in sunflowers.


Author(s):  
A.R. Resmi ◽  
B. Lovely ◽  
A. Jayapal ◽  
G. Suja ◽  
N. Chitra

Background: Amaranthus is the most popular and commercially cultivated leafy vegetable in the Southern part of India, especially Tamil Nadu and Kerala which is susceptible to a number of diseases. Among the different diseases affecting amaranth, foliar blight caused by Rhizoctonia solani Kuhn, is considered as the most serious disease in Kerala. Methods: A field experiment was taken up at Onattukara Regional Agricultural Research Station (O.R.A.R.S), Kayamkulam, Alappuzha, Kerala during December 2019 to February 2020 to assess the influence of dust and liquid formulations of Plant Growth Promoting Rhizobacteria (PGPR) mix I on growth, yield and disease incidence (Rhizoctonia leaf blight) in amaranthus. Result: The results of the study reveal that maximum number of leaves, number of branches per plant and yield were produced by the plants that were subjected to seedling root dip with 5% talc formulation followed by drenching with 5% talc solution at 30 DAT and 45 DAT. Regardless of talc or liquid formulation of PGPR mix I (2%) seedling dip followed by drenching at 15, 30 and 45 DAT provided the least disease incidence and disease severity in amaranthus at Onattukara condition. Hence use of PGPR mix I is a prerequisite for effective growth, yield and management of leaf blight of amaranthus at Onattukara.


Sign in / Sign up

Export Citation Format

Share Document