scholarly journals EFFECTS OF PLANT GROWTH PROMOTING RHIZOBACTERIA ON SUMMER SQUASH GROWTH, YIELD, NUTRIENTS UPTAKE AND AVAILABILITY UNDER NITROGEN AND PHOSPHORUS FERTILIZATION LEVELS

2015 ◽  
Vol 23 (2) ◽  
pp. 497-513
Author(s):  
Elwan, M.W. M. ◽  
Abd El-Azeem M.
2021 ◽  
Vol 12 ◽  
Author(s):  
Panagiotis Kalozoumis ◽  
Dimitrios Savvas ◽  
Konstantinos Aliferis ◽  
Georgia Ntatsi ◽  
George Marakis ◽  
...  

In the current study, inoculation with plant growth-promoting rhizobacteria (PGPR) and grafting were tested as possible cultural practices that may enhance resilience of tomato to stress induced by combined water and nutrient shortage. The roots of tomato grown on perlite were either inoculated or not with PGPR, applying four different treatments. These were PGPR-T1, a mix of two Enterobacter sp. strains (C1.2 and C1.5); PGPR-T2, Paenibacillus sp. strain DN1.2; PGPR-T3, Enterobacter mori strain C3.1; and PGPR-T4, Lelliottia sp. strain D2.4. PGPR-treated plants were either self-grafted or grafted onto Solanum lycopersicum cv. M82 and received either full or 50% of their standard water, nitrogen, and phosphorus needs. The vegetative biomass of plants subjected to PGPR-T1 was not reduced when plants were cultivated under combined stress, while it was reduced by stress to the rest of the PGPR treatments. However, PGPR-T3 increased considerably plant biomass of non-stressed tomato plants than did all other treatments. PGPR application had no impact on fruit biomass, while grafting onto ’M82’ increased fruit production than did self-grafting. Metabolomics analysis in tomato leaves revealed that combined stress affects several metabolites, most of them already described as stress-related, including trehalose, myo-inositol, and monopalmitin. PGPR inoculation with E. mori strain C3.1 affected metabolites, which are important for plant/microbe symbiosis (myo-inositol and monopalmitin). The rootstock M82 did not affect many metabolites in plant leaves, but it clearly decreased the levels of malate and D-fructose and imposed an accumulation of oleic acid. In conclusion, PGPR are capable of increasing tomato tolerance to combined stress. However, further research is required to evaluate more strains and refine protocols for their application. Metabolites that were discovered as biomarkers could be used to accelerate the screening process for traits such as stress tolerance to abiotic and/or abiotic stresses. Finally, ‘M82’ is a suitable rootstock for tomato, as it is capable of increasing fruit biomass production.


2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
Aghajan bahadori ◽  
Mohmmad Hossein GHarineh ◽  
Abdolmahdi Bakhshandeh ◽  
Naeimeh Enayatizamir ◽  
Alireza Shafeinia

This study was performed in order to investigate the effect of Plant growth-promoting rhizobacteria in reducing nitrogen and phosphorus Fertilizers Application in Sugarcane. The field experiment of this study was in the form of Split–block design with subplots in stips with four replications and three factors, including bacterial factor at four levels (control, Enterobacter cloaca, Pseudomonas putida and a combination of two types of bacteria), nitrogen factor at three levels (50, 75 and 100% recommended nitrogen for sugarcane (and phosphorus factor at three levels (50, 75 and 100% recommended phosphorus for sugarcane), was carried out in 2016-2017crop year in DC7-10 research farm of Dehkhoda sugarcane agro-industryin Ahvaz, in the southwest of Iran, on CP73-21 sugarcane variety. According to the analysis of variance tables, simple and interaction effects of the tested treatments, in the case of quantitative traits, including stalk yield, height, diameter, stalk density, percentage of nitrogen and phosphorus of leaves, chlorophyll content, LAI and HI in sugarcane were significant at the level of 1% probability. Comparison of means showed that the application of simultaneous application of growth-promoting bacteria along with the application of 75% recommended nitrogen and phosphorus for sugarcane, compared with the control treatment (application of 100% recommended nitrogen and phosphorus for sugarcane, without the use of bacteria), Was able to succeed in these traits 96.9%, 98.1%, 95.7%, 96.3%, 100.2% ,101.9%, 91.2% and 94.8%, respectively and Provide 21/9, 23/1, 20/7, 21/3, 25, 25, 16.2 and 19.8% of the nutrients of nitrogen and phosphorus for sugarcane, respectively, and is saved the same amount of nitrogen and phosphorus consumption for sugarcane. Also, regarding the sugarcane yield, the simultaneous application treatment of the tested bacteria along with the application of 100% recommended phosphorus and nitrogen for sugarcane, Compared to the control treatment


2021 ◽  
Vol 13 (15) ◽  
pp. 8535
Author(s):  
Muhammad Ijaz ◽  
Abdul Sattar ◽  
Ahmad Sher ◽  
Sami Ul-Allah ◽  
Muhammad Zeeshan Mansha ◽  
...  

Sunflower (Helianthus annuus L.), a member of the Asteraceae, is one of the major oilseed crops around the world. Charcoal rot caused by Macrophomina phaseolina (Tassi) Goid is the most damaging disease of sunflowers globally. Fungicides are mostly used to control charcoal rot; however, these cause environmental pollution and pose adverse effects on the ecosystem. Therefore, ecofriendly management options are inevitable for the management of charcoal rot disease. Plant mineral nutrition, the use of plant growth-promoting rhizobacteria and biochar have recently been manipulated for the management of different plant diseases. However, the interactive effects of all these treatments have rarely been tested on charcoal rot suppression in sunflowers. This study assessed the influence of sulfur (0 and 2.25 mg/kg) combined with farmyard manure biochar (2%), NPK (20:20:20 mg/kg) and three different plant growth-promoting rhizobacteria (PGPR) strains on the charcoal rot suppression growth, yield, biochemistry and physiology of sunflower. The PGPR strains included in the study were Bacillus sp. strain MR-1/2 (regarded as PGPR1), Achromobacter sp. strain FB-14 (regarded as PGPR2) and Planomicrobium sp. strain MSSA-10 (regarded as PGPR3). The charcoal rot infestation was induced by inoculating the soil with M. phaseolina, and the impacts of the different treatments were studied on the disease infestation, growth, yield, biochemistry and physiology of sunflowers under 0 and 2.25-mg/kg S application. The results revealed that farmyard manure biochar and Planomicrobium sp. strain MSSA-10 in combination with 2.25-mg/kg S proved effective for the management of charcoal rot disease through regulating the antioxidant enzymes’ activities and strengthening the immune system of sunflower plants. The studied health markers (total chlorophyll content and carotenoids) and stress markers (total protein content, catalase and peroxidase) were significantly altered by the applied treatments under 0 and 2.25-mg/kg S applications. The findings of the experiment indicated that both farmyard manure biochar and Planomicrobium sp. strain MSSA-10, combined with 2.25-mg/kg S, could be used to enhance the crop yield and manage charcoal rot disease in sunflowers. Farmyard manure biochar and Planomicrobium sp. strain MSSA-10 are an easy-to-apply, cost-effective, ecofriendly and sustainable option for the management of charcoal rot disease in sunflowers.


Author(s):  
A.R. Resmi ◽  
B. Lovely ◽  
A. Jayapal ◽  
G. Suja ◽  
N. Chitra

Background: Amaranthus is the most popular and commercially cultivated leafy vegetable in the Southern part of India, especially Tamil Nadu and Kerala which is susceptible to a number of diseases. Among the different diseases affecting amaranth, foliar blight caused by Rhizoctonia solani Kuhn, is considered as the most serious disease in Kerala. Methods: A field experiment was taken up at Onattukara Regional Agricultural Research Station (O.R.A.R.S), Kayamkulam, Alappuzha, Kerala during December 2019 to February 2020 to assess the influence of dust and liquid formulations of Plant Growth Promoting Rhizobacteria (PGPR) mix I on growth, yield and disease incidence (Rhizoctonia leaf blight) in amaranthus. Result: The results of the study reveal that maximum number of leaves, number of branches per plant and yield were produced by the plants that were subjected to seedling root dip with 5% talc formulation followed by drenching with 5% talc solution at 30 DAT and 45 DAT. Regardless of talc or liquid formulation of PGPR mix I (2%) seedling dip followed by drenching at 15, 30 and 45 DAT provided the least disease incidence and disease severity in amaranthus at Onattukara condition. Hence use of PGPR mix I is a prerequisite for effective growth, yield and management of leaf blight of amaranthus at Onattukara.


2021 ◽  
Vol 226 ◽  
pp. 00031
Author(s):  
Muhammad Muhammad ◽  
Umi Isnatin ◽  
Peeyush Soni ◽  
Praptiningsih Gamawati Adinurani

This study aimed to find an effective combination of mycorrhiza, PGPR (Plant Growth Promoting Rhizobacteria), and inorganic fertilizers. Whereas the specific purpose was observed in effective mycorrhiza to increased chlorophyll content. This study used a completely randomized design (CRD) with three factors: the 1st factor is mycorrhiza application, the 2nd factor is PGPR and the 3rd factor is the application of nitrogen and phosphorus fertilizers. The data were analyzed with Analysis of Variance to determine the effect of the treatment being tried. Continued with the Least Significance Different test at a 95 % confidence level. The results indicated that the most effective application in increasing total chlorophyll content was (i) the ‟Commercial Mycorrhiza” without being combined with PGPR and fertilizer (TP.TR.MP:80 g mL–1). (ii) ‟Brawijaya Mycorrhiza” is combined with PGPR without fertilizer (TP.R.MB: 83 g mL–1). (iii) ‟Unida Mycorrhiza” without combined with PGPR and without fertilizer (TP.TR.MU: 80 g mL–1).


2010 ◽  
Vol 33 (12) ◽  
pp. 1733-1743 ◽  
Author(s):  
Mehrab Yadegari ◽  
H. Asadi Rahmani ◽  
G. Noormohammadi ◽  
A. Ayneband

Sign in / Sign up

Export Citation Format

Share Document