scholarly journals Analysis of Genetic Diversity in Chrysopogon aciculatus Using Intersimple Sequence Repeat and Sequence-related Amplified Polymorphism Markers

HortScience ◽  
2016 ◽  
Vol 51 (8) ◽  
pp. 972-979 ◽  
Author(s):  
Xinyi Zhang ◽  
Li Liao ◽  
Zhiyong Wang ◽  
Changjun Bai ◽  
Jianxiu Liu

Molecular genetic diversity and relationships among 86 Chrysopogon aciculatus (Retz.) Trin. accessions were assessed using intersimple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers. Twenty-five ISSR markers generated 283 amplification bands, of which 266 were polymorphic. In addition, 576 polymorphic bands were detected from 627 bands amplified using 30 SRAP primers. Both marker types revealed a high level of genetic diversity, with ISSR markers showing a higher proportion of polymorphic loci (PPL; 94%) than SRAP markers (91.87%). The ISSR and SRAP data were significantly correlated (r = 0.8023). Cluster analysis of the separate ISSR and SRAP data sets clustered the accessions into three groups, which generally were consistent with geographic provenance. Cluster analysis of the combined ISSR and SRAP data set revealed four major groups similar to those based solely on ISSR or SRAP markers. The findings demonstrate that ISSR and SRAP markers are reliable and effective tools for analysis of genetic diversity in C. aciculatus.

2021 ◽  
Author(s):  
Mohammad Aghaei ◽  
Abbas Hassani ◽  
Hossein Nazemiyeh ◽  
Babak Abdollahi Mandoulakani ◽  
Mohammad Saadatian

Abstract Salicornia is a halophyte plant capable of being irrigated with seawater, which can be used as an alternative food. Given this, it is necessary to study the potentials of this plant's morphological diversity in the natural environment. In this study, 33 wild populations of Salicornia were collected from different geographical areas around Urmia Lake during the flowering stage, and some morphological traits and 25 ISSR loci of the plant were measured. Based on morphological traits and the cluster analysis, Salicornia populations were divided into four groups. Overall, the high percentage of polymorphic gene loci (65.69%), the average number of effective alleles per gene locus (1.63), and the Shannon data index (0.540) indicate that ISSR markers can be used in Identify genetic diversity to be used. Molecular data cluster analysis divided the studied populations into two main groups, which included 12.12% and 87.88% of the populations, respectively. Based on the effective analysis of the population's genetic structure and the precise classification of individuals into suitable sub-populations, the value of K = 2 was calculated. The research findings indicated that markers UBC823, B, A7, and K, and with the Shannon index, effective allele, and large heterozygosity values are markers with the highest effectiveness compared to other markers utilized, and they are used better than other compounds in genetic distance. The findings of this study will aid in parental selection studies for breeding programs of salicornia in future.


Author(s):  
Xiuli Lv ◽  
Yuan Guan ◽  
Jian Wang ◽  
Yanwei Zhou ◽  
Qunlu Liu ◽  
...  

To reveal the genetic diversity and genetic relationships of China’s Bergenia germplasm, 28 Bergenia accessions from different regions in China were analyzed by 24 intersimple sequence repeat (ISSR) markers. The results showed that 318 sites were amplified in all germplasm, including 307 polymorphic sites, and the percentage of polymorphic sites was 96.54%. Cluster analysis showed that the 28 accessions were divided into three categories, with a similarity coefficient of 0.5475. Bergenia purpurascens was clustered into one category; B. scopulosa was clustered into one category; and B. tianquaninsis, B. emeiensis, B. stracheyi, and B. crassifolia were clustered into one category. The results of the cluster analysis indicated that the 28 accessions were not completely classified by origin. Using the ISSR marker technique to analyze the phylogenetic relationship of Bergenia germplasm is helpful for identifying valuable resources and providing a theoretical basis for the selection of breeding parents.


Author(s):  
K. P. Gainullina

The analysis of molecular genetic diversity of pea cultivars by microsatellites was conducted. A high level of polymorphism of SSR loci which allows using them for identification of the studied cultivars and lines was revealed.


2020 ◽  
Vol 345 ◽  
pp. 15-25
Author(s):  
Meryem MAKKAOUI ◽  
Younes ABBAS ◽  
Salwa EL ANTRY-TAZY ◽  
Leila MEDRAOUI ◽  
Mohammed ALAMI ◽  
...  

Tetraclinis articulata (Vahl) Masters is one of Morocco's most important forest species. It is also found occasionally in Malta and Spain, showing significant adaptability to different bio-climatic conditions. However, the species is being affected by anthropogenic fragmentation, logging and neglect from authorities, which could lead to the irretrievable loss of this resource. In this study, the genetic diversity and genetic structure of ten Moroccan populations of T. articulata were assessed. Fifteen Inter-Simple Sequence Repeat (ISSR) markers were used. These generated 271 polymorphic fragments with an average of 18.06 per primer and showed 79.59% of polymorphism. The 129 individuals revealed a high level of genetic diversity (Hs = 0.221; Ht = 0.254) and 85% of genetic variation within populations. However, the genetic differentiation level was low (Gst = 0.13), which is consistent with the lack of correlation between genetic and geographic distances revealed by the Mantel test, resulting in a high level of gene flow (Nm = 3.294). Based on PCoA and neighbour-joining methods, the ten populations clustered under the effect of continental and marine climates. Compared with other conifers, the current genetic diversity and the pattern of T. articulata population structure indicate an important gene pool requiring efficient conservation strategies.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Roghayeh Najafzadeh ◽  
Kazem Arzani ◽  
Naser Bouzari ◽  
Ali Saei

Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars) was investigated and identified using 23 intersimple sequence repeat (ISSR) markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially ISSR-4, ISSR-6, ISSR-13, ISSR-14, ISSR-16, and ISSR-19 produced good and various levels of amplifications which can be effectively used in genetic studies of the sour cherry. The genetic similarity among genotypes showed a high diversity among the genotypes. Cluster analysis separated improved cultivars from promising Iranian genotypes, and the PCoA supported the cluster analysis results. Since the Iranian genotypes were superior to the improved cultivars and were separated from them in most groups, these genotypes can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that ISSR is a reliable DNA marker that can be used for exact genetic studies and in sour cherry breeding programs.


2003 ◽  
Vol 128 (4) ◽  
pp. 521-525 ◽  
Author(s):  
Kirk W. Pomper ◽  
Sheri B. Crabtree ◽  
Shawn P. Brown ◽  
Snake C. Jones ◽  
Tera M. Bonney ◽  
...  

The pawpaw [Asimina triloba (L.) Dunal.] is a tree fruit native to many areas of the southeastern and mid-western United States. Kentucky State University (KSU) is designated as a satellite repository for Asimina for the U.S. Department of Agriculture (USDA), National Plant Germplasm System (NPGS). An assessment of the level of genetic diversity in cultivated pawpaw would assist in development of the future germplasm repository collection strategies for cultivar improvement. The objectives of this study were to identify intersimple sequence repeat (ISSR) markers that segregate in a simple Mendelian fashion and to use these markers to assess genetic diversity in 19 pawpaw cultivars. Leaf samples from the 34 progeny of controlled crosses (1-7-1 × 2-54 and reciprocal) and the parents were collected, DNA was extracted, and subjected to the ISSR methodology using the University of British Columbia microsatellite primer set #9. Seven primers yielded 11 Mendelian markers with either a 3:1 or 1:1 ratio that was confirmed by chi-square analysis. Analysis of genetic diversity using 10 of the ISSR markers from 19 pawpaw cultivars revealed a moderate to high level of genetic diversity, with a percent polymorphic loci P = 80 and an expected heterozygosity He = 0.358. These diversity values are higher than those reported for cultivated pawpaw using isozyme or randomly amplified polymorphic DNA (RAPD) markers, indicating that the ISSR marker methodolgy has a higher level of discrimination in evaluating genetic diversity in pawpaw and/or pawpaw has greater levels of genetic diversity than previously found.


2021 ◽  
pp. 1-11
Author(s):  
Karishma Kashyap ◽  
Rasika M. Bhagwat ◽  
Sofia Banu

Abstract Khasi mandarin (Citrus reticulata Blanco) is a commercial mandarin variety grown in northeast India and one of the 175 Indian food items included in the global first food atlas. The cultivated plantations of Khasi mandarin grown prominently in the lower Brahmaputra valley of Assam, northeast India, have been genetically eroded. The lack in the efforts for conservation of genetic variability in this mandarin variety prompted diversity analysis of Khasi mandarin germplasm across the region. Thus, the study aimed to investigate genetic diversity and partitioning of the genetic variations within and among 92 populations of Khasi mandarin collected from 10 cultivated sites in Kamrup and Kamrup (M) districts of Assam, India, using Inter-Simple Sequence Repeat (ISSR) markers. The amplification of genomic DNA with 17 ISSR primers yielded 216 scorable DNA amplicons of which 177 (81.94%) were polymorphic. The average polymorphism information content was 0.39 per primer. The total genetic diversity (HT = 0.28 ± 0.03) was close to the diversity within the population (HS = 0.20 ± 0.01). A high mean coefficient of gene differentiation (GST = 0.29) reflected a high level of gene flow (Nm = 1.22), indicating high genetic differentiation among the populations. Analysis of Molecular Variance (AMOVA) showed 78% of intra-population differentiation, 21% among the population and 1% among the districts. The obtained results indicate the existence of a high level of genetic diversity in the cultivated Khasi mandarin populations, indicating the need for preservation of each existing population to revive the dying out orchards in northeast India.


Sign in / Sign up

Export Citation Format

Share Document