scholarly journals In Vitro Gynogenesis and Flow Cytometry Analysis of the Regenerated Haploids of Black Cumin (Nigella sativa)

HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 681-686 ◽  
Author(s):  
Mohammed Elsayed El-Mahrouk ◽  
Mossad K. Maamoun ◽  
Antar Nasr EL-Banna ◽  
Soliman A. Omran ◽  
Yaser Hassan Dewir ◽  
...  

In vitro ovule culture could be used to generate homozygous lines through the production of haploid plants. The present study reports on in vitro regeneration and production of haploid plants through ovule cultures and identification of the regenerated haploids using flow cytometry. The ovules were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyladenine (BA), kinetin (Kin), 2,4-dichlorophenoxyacetic acid (2,4-D), and naphthalene acetic acid (NAA) at 0, 0.5, 1, and 2 mg·L−1 for their gynogenesis. Among different plant growth regulators (PGRs) tested, 2,4-D at 2 mg·L−1 produced direct gynogenesis. The highest callogenesis percentage (100%) was obtained on MS medium containing 1 mg·L−1 2,4-D and 2 mg·L−1 NAA. Flow cytometry analysis was used to identify the regenerated haploids. It also confirmed gynogenic occurrence at 1 and 2 mg·L−1 2,4-D with percentages of 21.7% and 41%, respectively. Therefore, 2,4-D proved effective for the induction of haploids in black cumin. The regenerated haploids were developed on MS medium without PGRs. The obtained results of in vitro gynogenesis and haploid plant production can tremendously facilitate breeding programs of black cumin.

2019 ◽  
Vol 6 (1) ◽  
pp. 1-7
Author(s):  
Diego Pandeló José ◽  
José Marcello Salabert De Campos ◽  
Lyderson Facio Viccini ◽  
Emilly Ruas Alkimim ◽  
Marcelo De Oliveira Santos

Lippia lacunosa is a Brazilian savanna plant that belongs to the Verbenaceae family. It has been used in folk medicine as a treatment for different diseases. This species represents an endangered Brazilian medicinal plant, and this is the first report documenting a reliable protocol for the in vitro propagation and regeneration of L. lacunosa. Axenic explants were cultivated in MS medium containing different concentrations of naphthalene acetic acid (NAA) to induce root growth. The mean shoot length and the number of roots were highest with 0.06 mg·L-1 NAA. The highest number of buds in shoot regeneration was induced with 2 mg·L-1 6-benzylaminopurine (BA). To obtain a long-term culture, the dwarf shoots were elongated on MS media containing 0.5 mg·L-1 BA alternated with MS containing 2 mg·L-1 BA every 40 days. In the present protocol, the long-term shoots retained the ability to root even after long periods of BA treatment. In addition, we evaluated the nuclear DNA content and ploidy levels, including the occurrence of endopolyploidy, in long-term micropropagated plant leaves using flow cytometry analysis. The plants propagated in vitro over several years possessed nuclear DNA contents ranging from 2.940 to 3.095 pg, and no differences in DNA content were found among in vitro plants or between these plants and the control (L. lacunosa from a greenhouse with a DNA content of 3.08 pg). The flow cytometry analysis also demonstrated that there was no polyploidization. The present study will be useful for biotechnological approaches and provides the first estimate of the nuclear DNA content of this species using flow cytometry.


2009 ◽  
Vol 36 (No. 4) ◽  
pp. 140-146 ◽  
Author(s):  
J.K. Kanwar ◽  
S. Kumar

The influence of growth regulators, explants and their interactions on in vitro shoot bud formation from callus was studied in <I>Dianthus caryophyllus</I> L. The leaf and internode explants were cultured on Murashige and Skoog (MS) medium containing different concentrations of growth regulators. The highest callus induction was observed with 2 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D) and 1 mg/l benzyl adenine (BA). Out of twenty seven shoot regeneration media tested, only 2 mg/l thidiazuron (TDZ) and zeatin alone or in combination with naphthalene acetic acid (NAA) and/or indole acetic acid (IAA) could differentiate calli. The highest average number of shoots was observed with 2 mg/l TDZ and 1 mg/l IAA. Significant differences were observed in calli producing shoots and number of shoots per callus in the explants of leaf and internode. The shoots were elongated and multiplied on MS medium supplemented with 1 mg/l BA and solidified with 1% agar. The shoots were rooted and hardened with 76% survival success in pots after six weeks of transfer to the pots.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Galileo Escobedo ◽  
Gloria Soldevila ◽  
Guadalupe Ortega-Pierres ◽  
Jesús Ramsés Chávez-Ríos ◽  
Karen Nava ◽  
...  

MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasiteTaenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host andT. crassiceps, and may be considered as target for anti-helminth drugs design.


2017 ◽  
Vol 39 (5) ◽  
Author(s):  
JÚLIO CÉSAR GOMES PEREIRA ◽  
SELMA SILVA ROCHA ◽  
LUCIANA CARDOSO NOGUEIRA LONDE ◽  
MARCELA CAROLINE BATISTA DA MOTA ◽  
PABLO FERNANDO SANTOS ALVES ◽  
...  

ABSTRACT The banana crop stands out as an activity of great social and economic importance in Brazil, which occupies the fifth place in world production. Synthetic seed production is becoming promising for a micropropagation and in vitro conservation. The aim of the study was to analyze the conversion and growth of ‘Prata-anã’ banana’s microshoots clone Gorutuba from synthetic seed in MS medium and vermiculite, different substrates and concentrations of BAP (6-benzylaminopurine) associated with ANA (acetic naphthalene acid) in the constitution of its capsule were tested. The microshoots were immersed in the sodium alginate matrix (3%) and dripped in a solution of CaCl2.2H2O (100 mM) for complexation and then in KNO3 solution (100 mM) to decomplex. The experimental design was completely randomized in a 2 x 5 factorial design (substrate x BAP concentrations), containing different substrates (MS culture medium and vermiculite) and BAP concentrations (2.22, 4.44, 6.66, 8.88 and 13.32 µmol L-1) associated with NAA (naphthalene acetic acid) 0.54 µmol L-1, totaling 10 treatments, with 4 replicates, and that each replicate containing 5 seeds. The evaluations of conversion, number of leaves, leaf length, leaf height, number of roots, root length and oxidation were performed at 30 and 60 days.The use of the MS medium provided better growth results in relation to vermiculite as substrate, in which the different BAP concentrations did not differ from each other. It was found that, in MS culture medium, BAP concentrations above 8.88 µmol L-1 in the capsule composition are not indicated for microshoots growth.


2018 ◽  
Vol 17 (5) ◽  
pp. 405-411
Author(s):  
Jiraporn PALEE

To evaluate an efficient protocol for the micropropagation of Tupistra albiflora K. Larsen, the effects of N6-benzylaminopurine (BA) and naphthalene acetic acid (NAA) concentrations on multiple shoot and root induction were examined. In vitro shoots were used as the explant materials which were cultured on Murashige and Skoog (MS) agar medium supplemented with 0, 1, 2, 3 and 4 mg/L BA for 4 weeks to induce multiple shoots. It was found that the MS medium containing 3 mg/L BA induced 100 % shoot formation with the highest number of 3.2 shoots per explant (2.4-fold significantly higher than the control). For root induction, in vitro shoots were cultured on MS agar medium supplemented with 0, 1, 2, 3 and 4 mg/L NAA for 8 weeks. The results showed that the MS medium containing 1 mg/L NAA induced 100 % root formation with the highest number of 6.6 roots per explant (1.8-fold significantly higher than the control).


2020 ◽  
Author(s):  
Nurşen Çördük ◽  
Cüneyt Aki

Digitalis trojana Ivanina is a member of the Plantaginaceae family and known by its common name, Helen of Troy foxglove. It is perennial endemic to Çanakkale and Balıkesir, northwestern Turkey. In order to develop an efficient shoot regeneration protocol, the leaf explants of D. trojana were cultured on Murashige and Skoog (MS) medium containing 6-benzyl adenine (0.1, 0.5, 1.0, 3.0, 5.0 mg/L) and α-naphthalene acetic acid (0.1, 0.5, 1.0 mg/L), 3% (w/v) sucrose and 0.8% (w/v) agar. The highest number of regenerated shoots was obtained from leaf explants that were cultured on MS medium with 3.0 mg/L BA+0.1 mg/L NAA. Regenerated shoots were rooted on MS medium without plant growth regulators. Rooted plants (2–3 cm) were separately transferred to pots containing a mixture of peat and perlite (2:1 v/v) and acclimatized successfully in a growth chamber.


Author(s):  
Eduardo Berenguer ◽  
Elena A Minina ◽  
Elena Carneros ◽  
Ivett Bárány ◽  
Peter V Bozhkov ◽  
...  

Abstract Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


2018 ◽  
Vol 47 (2) ◽  
pp. 538-543
Author(s):  
Rodrigo Kelson S. REZENDE ◽  
Ana Maria N. SCOTON ◽  
Maílson V. JESUS ◽  
Zeva V. PEREIRA ◽  
Fernanda PINTO

Baru (Dipteryx alata Vog.) is a species with great economic and environmental potential; it has popular acceptance, besides being a very productive species. Alternative propagation methods are important for species maintenance and exploration. Thus, micropropagation emerged as an alternative technique, providing genetic stability and the production of a large number of seedlings. The aim of the present investigation was to develop a callus induction protocol for in vitro baru explants. The tested explants were nodal, internodal and foliar segments. The explants were disinfected for 30 seconds in 70% alcohol (v/v) and 2 minutes in sodium hypochlorite (1.25% active chlorine). This was followed by triple washing. The inoculation was carried out in test tubes containing 15 mL MS medium (30 g L-1 sucrose, 6 g L-1 agar and 100 mg L-1 ascorbic acid) supplemented with 2.0 mg L-1 naphthalene acetic acid (NAA). The solution also contained 0.0, 2.5 or 5.0 mg L-1 of 6-benzylaminopurine (BAP) with the pH adjusted to 5.8. In the incubation phase, the explants were cultured for seven days in the dark and then subjected to a photoperiod of 16 hours (43 µmol m-2 s-1) at 25 ± 2 °C. The treatments were studied with 2.5, 5.0, 7.5 or 10.0 mg L-1 BAP additions to the MS. Callus formation, contamination and oxidation evaluations were undertaken. The results obtained when using 2.0 mg L-1 NAA concluded that such a treatment should be used to induce callogenesis from nodal explants, while for the tested baru leaf explants, the best results for callus formation were given by the combination of 2.0 mg L-1 NAA with 2.5 mg L-1 of BAP to.


Antioxidants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 51 ◽  
Author(s):  
Laura Bordoni ◽  
Donatella Fedeli ◽  
Cinzia Nasuti ◽  
Filippo Maggi ◽  
Fabrizio Papa ◽  
...  

The oil obtained from the seeds of Nigella sativa L. (N. sativa), also known as black cumin, is frequently used in the Mediterranean area for its anti-inflammatory, anti-oxidant, and anti-cancer activities. The aim of the present study was to evaluate the antioxidant and anti-inflammatory properties of the oil extracted from seeds of a N. sativa cultivar produced in the Marche region of Italy, and to determine if the thymoquinone content, antioxidant properties, and biological activity would decay during storage. Cytotoxicity and anti-inflammatory properties of N. sativa oil were tested in an in vitro model of low-grade inflammation in Simpson–Golabi–Behmel syndrome human pre-adipocytes. The fresh extracted oil (FEO) contained 33% more thymoquinone than stored extracted oil (SEO), demonstrating that storage affects its overall quality. In addition, the thymoquinone content in the N. sativa oil from the Marche region cultivar was higher compared with other N. sativa oils produced in the Middle East and in other Mediterranean regions. Pro-inflammatory cytokines (e.g., Interleukin (IL)-1alpha, IL-1beta, IL-6) were differently modulated by fresh and stored extracts from N. sativa oils: FEO, containing more thymoquinone reduced IL-6 levels significantly, while SEO inhibited IL-1beta and had a higher antioxidant activity. Total antioxidant activity, reported as µM of Trolox, was 11.273 ± 0.935 and 6.103 ± 0.446 for SEO and FEO (p = 1.255 × 10−7), respectively, while mean values of 9.895 ± 0.817 (SEO) and 4.727 ± 0.324 (FEO) were obtained with the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay (p = 2.891 × 10−14). In conclusion, the oil capacity to counteract proinflammatory cytokine production does not strictly depend on the thymoquinone content, but also on other antioxidant components of the oil.


Sign in / Sign up

Export Citation Format

Share Document