scholarly journals Genetic Diversity and Population Structure of Rhododendron canescens, a Native Azalea for Urban Landscaping

HortScience ◽  
2019 ◽  
Vol 54 (4) ◽  
pp. 647-651
Author(s):  
Lav K. Yadav ◽  
Edward V. McAssey ◽  
H. Dayton Wilde

Rhododendron canescens is a deciduous azalea native to the southeastern United States that is used in landscaping due to its ornamental qualities. A genotyping-by-sequencing (GBS) approach was taken to characterize the genetic structure and diversity of a R. canescens germplasm collection. Single nucleotide polymorphisms (SNPs) were identified by two software platforms, STACKS and GBS-SNP-CROP. Three distinct R. canescens populations were detected by STRUCTURE analysis with GBS-SNP-CROP data, whereas two populations were distinguished using STACKS data. Principal component analysis (PCA) with data from both SNP pipelines supported the presence of three populations. Statistical results indicated that there was low genetic differentiation between the populations, but relatively high genetic diversity within populations. The inbreeding coefficient of the R. canescens accessions was low, which would be expected with an outcrossing species. These results suggest that there may be a significant level of gene flow between populations of R. canescens.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1190 ◽  
Author(s):  
Eunju Seo ◽  
Kipoong Kim ◽  
Tae-Hwan Jun ◽  
Jinsil Choi ◽  
Seong-Hoon Kim ◽  
...  

Cowpea is one of the most essential legume crops providing inexpensive dietary protein and nutrients. The aim of this study was to understand the genetic diversity and population structure of global and Korean cowpea germplasms. A total of 384 cowpea accessions from 21 countries were genotyped with the Cowpea iSelect Consortium Array containing 51,128 single-nucleotide polymorphisms (SNPs). After SNP filtering, a genetic diversity study was carried out using 35,116 SNPs within 376 cowpea accessions, including 229 Korean accessions. Based on structure and principal component analysis, a total of 376 global accessions were divided into four major populations. Accessions in group 1 were from Asia and Europe, those in groups 2 and 4 were from Korea, and those in group 3 were from West Africa. In addition, 229 Korean accessions were divided into three major populations (Q1, Jeonra province; Q2, Gangwon province; Q3, a mixture of provinces). Additionally, the neighbor-joining tree indicated similar results. Further genetic diversity analysis within the global and Korean population groups indicated low heterozygosity, a low polymorphism information content, and a high inbreeding coefficient in the Korean cowpea accessions. The population structure analysis will provide useful knowledge to support the genetic potential of the cowpea breeding program, especially in Korea.


2020 ◽  
Vol 61 (1) ◽  
pp. 17-23
Author(s):  
Michelle M. Nay ◽  
Stephen L. Byrne ◽  
Eduardo A. Pérez ◽  
Achim Walter ◽  
Bruno Studer

Genomics-assisted breeding of buckwheat (Fagopyrum esculentum Moench) depends on robust genotyping methods. Genotyping by sequencing (GBS) has evolved as a flexible and cost-effective technique frequently used in plant breeding. Several GBS pipelines are available to genetically characterize single genotypes but these are not able to represent the genetic diversity of buckwheat accessions that are maintained as genetically heterogeneous, open-pollinating populations. Here we report the development of a GBS pipeline which, rather than reporting the state of bi-allelic single nucleotide polymorphisms (SNPs), resolves allele frequencies within populations on a genome-wide scale. These genome-wide allele frequency fingerprints (GWAFFs) from 100 pooled individual plants per accession were found to be highly reproducible and revealed the genetic similarity of 20 different buckwheat accessions analysed in our study. The GWAFFs cannot only be used as an efficient tool to precisely describe buckwheat breeding material, they also offer new opportunities to investigate the genetic diversity between different buckwheat accessions and establish variant databases for key material. Furthermore, GWAFFs provide the opportunity to associate allele frequencies to phenotypic traits and quality parameters that are most reliably described on population level. This is the key to practically implement powerful genomics-assisted breeding concepts such as marker-assisted selection and genomic selection in future breeding schemes of allogamous buckwheat. Key words: Buckwheat (Fagopyrum esculentum Moench), genotyping by sequencing (GBS), population genomics, genome-wide allele frequency fingerprints (GWAFFs)   Izvleček Genomsko podprto žlahtnjenje ajde (Fagopyrum esculentum Moench) je odvisno od robustnih metod genotipiziranja. Genotipiziranje s spremljanjem sekvenc (genotyping by sequencing, GBS) se je razvilo kot fleksibilna in razmeroma poceni metoda, ki se jo uporablja pri žlahtnjenju rastlin. Uporabnih je več virov GBS za genetsko karakterizacijo posamičnih genotipov, toda te metode niso primerne za predstavitev genetske raznolikosti vzorcev ajde, ki jih vzdržujemo v heterozigotni obliki, kar velja za odprto oplodne populacije. Tu poročamo o razvoju GBS metode, ki, namesto prikazovanja bi-alelnega polimorfizma posameznih nukleotidov (single nucleotide polymorphisms, SNPs), pokaže frekvence alelov v populaciji na nivoju genoma. Ta prikaz frekvence alelov na nivoju genoma (genome-wide allele frequency fingerprints, GWAFFs) z združenimi sto posameznimi rastlinami vsakega vzorca se je pokazal kot visoko ponovljiv in je prikazal genetsko podobnost 20 različnih vzorcev ajde, ki smo jih analizirali v naši raziskavi. Metoda GWAFFs ni uporabna samo kot učinkovito orodje za natančen opis materiala za žlahtnjenje ajde, ponuja tudi možnosti raziskave  genetskih razlik med različnimi vzorci ajde in omogoča zbirke podatkov. Nadalje, metoda GWAFFs omogoča povezovanje frekvenc alelov s fenotipskimi lastnostmi in kvalitativnih parametrov, ki so najbolj zanesljivo opisani na nivoju populacij. To je ključ za praktično uporabo z genomiko podprtega žlahtnjenja, kot je z genskimi markerji podprta selekcija in genomska selekcija z GWAFFs. Ključne besede: ajda (Fagopyrum esculentum Moench), genotipizacija s sekvenciranjem (GBS), populacijska genomika, GWAFFs


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 822 ◽  
Author(s):  
Kyung Jun Lee ◽  
Jung-Ro Lee ◽  
Raveendar Sebastin ◽  
Myoung-Jae Shin ◽  
Seong-Hoon Kim ◽  
...  

Watermelon is an economically important vegetable fruit worldwide. The objective of this study was to conduct a genetic diversity of 68 watermelon accessions using single nucleotide polymorphisms (SNPs). Genotyping by sequencing (GBS) was used to discover SNPs and assess genetic diversity and population structure using STRUCTURE and discriminant analysis of principal components (DAPC) in watermelon accessions. Two groups of watermelons were used: 1) highly utilized 41 watermelon accessions at the National Agrobiodiversity Center (NAC) at the Rural Development Administration in South Korea; and 2) 27 Korean commercial watermelons. Results revealed the presence of four clusters within the populations differentiated principally based on seed companies. In addition, there was higher genetic differentiation among commercial watermelons of each company. It is hypothesized that the results obtained from this study would contribute towards the expansion of this crop as well as providing data about genetic diversity, which would be useful for the preservation of genetic resources or for future breeding programs.


2008 ◽  
Vol 6 (02) ◽  
pp. 167-174 ◽  
Author(s):  
Rajeev K. Varshney ◽  
Khaled F. M. Salem ◽  
Michael Baum ◽  
Marion S. Roder ◽  
Andreas Graner ◽  
...  

Sets of microsatellites extracted from both a genomic library (gSSRs) and from expressed sequence tag sequence (eSSRs), and single nucleotide polymorphisms (SNPs) were applied to assess the levels of genetic diversity in a sample of 70 barley accessions, originating from 28 countries in Asia, Africa, the Middle East and Europe. The eSSR assays detected a mean of 9.5 alleles per locus, and the gSSRs only 5.7 alleles per locus, but the polymorphism information content values for the two assay types were indistinguishable. Strong and statistically significant correlations were observed between the eSSR and gSSR (r = 0.86,P < 0.05), the eSSR and SNP (r = 0.74,P < 0.05) and the gSSR and SNP genotypes (r = 0.67,P < 0.05). Accessions originating from the Middle East and Asia had the highest levels of genetic diversity. Pairwise genetic similarity ranged from 0.16 to 0.87 (mean 0.43), indicating that the sample was genetically diverse. When clustered on the basis of genotype, Asian and African accessions tended to be grouped together, but those originating from the Middle East were not concentrated in any particular cluster.


2017 ◽  
Author(s):  
Eltohamy A. A. Yousef ◽  
Thomas Müller ◽  
Andreas Börner ◽  
Karl J. Schmid

AbstractCauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration.


2019 ◽  
Vol 144 (4) ◽  
pp. 257-263 ◽  
Author(s):  
Xingbo Wu ◽  
Lisa W. Alexander

Hydrangea macrophylla (bigleaf hydrangea) is one of the most important floral and nursery crops worldwide. However, breeding of new bigleaf hydrangea cultivars has been hampered by a long breeding cycle and lack of genetic resources. This study investigated the genetic diversity and population structure of 82 bigleaf hydrangea cultivars using single-nucleotide polymorphisms (SNPs) originated from genotyping-by-sequencing. A total of 5803 high-quality SNPs were discovered in a bigleaf hydrangea cultivar panel. A phylogenetic analysis and analysis of molecular variance based on discovered SNPs concluded the taxonomic classification of H. macrophylla ssp. serrata as a subspecies of H. macrophylla. Principal component analysis confirmed ‘Preziosa’ as a hybrid between H. macrophylla ssp. macrophylla and H. macrophylla ssp. serrata. In addition, the cultivar Lady in Red was also found to be a hybrid between the two subspecies. The population structure analysis identified three groups among the 82 cultivars. All H. macrophylla ssp. serrata cultivars belonged to one group, and two groups were revealed within H. macrophylla ssp. macrophylla. The separation within H. macrophylla ssp. macrophylla indicated a second gene pool due to breeding efforts that have targeted similar breeding goals for bigleaf hydrangea. The discovered SNPs and the phylogenetic results will facilitate further exploitation and understanding of phylogenetic relationships of bigleaf hydrangea and will serve as a reference for hydrangea breeding improvements.


2021 ◽  
Author(s):  
Zeliang Zhang ◽  
Junduo Wang ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Xiantao Ai ◽  
...  

Genetic diversity, kinship and population genetic structure analyses of Gossypium hirsutum germplasm can provide a better understanding of the origin and evolution of G. hirsutum biodiversity. In this study, 1313331 SNP molecular markers were used to construct a phylogenetic tree of each sample using MEGAX, to perform population structure analysis by ADMIXTURE software and principal component analysis (PCA) by EIGENSOFT software, and to estimate relatedness using SPAGeDi. ADMIXTURE software divided the experimental cotton population into 16 subgroups, and the Gossypium hirsutum samples could be roughly clustered according to source place, but there were some overlapping characteristics among samples. The experimental cotton population was divided into six groups according to source to calculate the genetic diversity index (H), and the obtained value (0.306) was close to that for germplasm collected by others in China. Cluster 4 had a relatively high genetic diversity level (0.390). The degrees of genetic differentiation within the experimental cotton population groups were low (the population differentiation indexes ranged from 0.02368 to 0.10664). The genetic distance among cotton accessions varied from 0.000332651 to 0.562664014, with an average of 0.25240429. The results of this study may provide a basis for mining elite alleles and using them for subsequent association analysis.


Sign in / Sign up

Export Citation Format

Share Document