scholarly journals Drought-tolerant Common Bush Bean Physiological Parameters as Indicators to Identify Susceptibility

HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2091-2098
Author(s):  
Alefsi David Sánchez-Reinoso ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Hermann Restrepo-Díaz

Bean crops can be displaced to marginal areas or face abiotic stresses such as water deficit. Physiological responses allow the identification of tolerant genotypes and lead to more precise breeding strategies. The objective of this research was to evaluate the physiological (leaf gas exchange properties, leaf water content, and leaf thickness) and biochemical [proline and malondialdehyde (MDA)] responses of five common bush bean (Phaseolus vulgaris L.) cultivars (ICA-Cerinza, ICA-Bachue, NUA35, Bianca, and Bacatá) under a water shortage period by irrigation suspension (15 days) at two different phenological stages [vegetative: 40–55 days after seed emergence (DAE) or reproductive: (50–65 DAE)]. A completely randomized block design was carried out with a factorial arrangement (the phenological stage as the main factor and the cultivars as the secondary factor) for a total of 10 treatments with four repetitions per treatment. Leaf photosynthesis (Pn) showed equal photosynthesis values in control plants of all cultivars (≈20 μmol·m−2·s−1). The water deficit period reduced Pn close to 55% (≈12 μmol·m−2·s−1) at both, vegetative, or reproductive stage in all cases. Similar results were also observed on leaf thickness, with a reduction of ≈10% in water-stressed plants at either vegetative or reproductive stage in all evaluated cultivars. A higher MDA and proline production were observed in plants affected by a 15-day water deficit period, mainly at the vegetative stage. The obtained results suggest that the vegetative stage presented a more negative impact on the evaluated physiological variables in most of the cultivars used. Cultivar Bachue showed lower gas exchange properties affectation and higher proline content, which may indicate that this cultivar can be tolerant to water deficit stress conditions. This study allows suggesting that proline and MDA estimation are simple, fast, and low-cost techniques to screen cultivars to obtain more precise breeding selection in common bean. Finally, common bean cultivar selection through the use of biochemical markers can be complemented by the estimation of leaf gas exchange parameters at different phenological stages.

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 526 ◽  
Author(s):  
Alefsi David Sánchez-Reinoso ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Hermann Restrepo-Díaz

The common bean is susceptible to drought conditions and the evaluation of plant responses to low water availability can be difficult. The quantification of chlorophyll fluorescence as a sensitive trait to environmental stresses is an important alternative in the characterization of drought-susceptible genotypes. The objective of this study was to evaluate mainly the use of chlorophyll α fluorescence (maximum efficiency of PSII (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (NPQ)) and rapid light-response curves (RLCs) (initial slope of the curve (α), minimum saturation irradiance (Ik) and maximum relative electron transport rate (ETRmax)) parameters as tools for the identification of susceptible or tolerant bush bean cultivars to water deficit stress conditions in two different phenological stages. Using a randomized block design in a factorial arrangement, five bush bean cultivars (Cerinza, Bachue, NUA35, Bacata and Bianca) were evaluated under water deficit conditions by the suspension of irrigation for 15 days from 40 to 55 Days after Emergence (DAE) (vegetative stage) or 50 to 65 DAE (reproductive stage). The results showed that Fv/Fm and NPQ recorded the highest variation due to water deficit conditions, especially in the vegetative stage. The greatest reductions in Fv/Fm (0.67) and NPQ (0.71) were evidenced in cultivar NUA35 compared to its control plants (0.78 and 1.07, respectively). The parameters obtained from RLCs showed that cultivar Bacata registered the lowest α (0.17) and Ik (838.19 μmol∙m−2∙s−1) values compared to its control plants (α 0.23; Ik 769.99 μmol∙m−2∙s−1). Differences were only obtained in ETRmax in the reproductive stage (50–65 DAE) in which cultivar NUA35 reached values of 158.5 in stressed plants compared to control plants (251.22). In conclusion, the parameters derived from RLCs such as α and Ik can be used as tools to identify drought susceptibility in the vegetative stage, whereas ETRmax can be used in the reproductive stage. In addition, PSII photochemistry (Fv/Fm and NPQ) can also help to understand the agronomic responses of common bush bean cultivars to drought conditions.


1996 ◽  
Vol 36 (7) ◽  
pp. 861 ◽  
Author(s):  
H Schaper ◽  
EK Chacko ◽  
SJ Blaikie

Gas exchange, leaf water status, soil water use and nut yield of cashew trees were monitored during the reproductive phase in 2 consecutive years (1988 and 1989). Treatment 1 comprised continuous irrigation from the end of the wet season in April until harvest in October; T2, irrigation between flowering (mid June) and harvest; and T3, no irrigation. Irrigation was applied by under-tree sprinkler at 43 mm/week in 1988 and 64 mm/week in 1989. Measurement of leaf gas exchange, chlorophyll content and nut production showed that trees in T2 were as productive as those in T1 (>1.3 kg kernel/tree). In T3, water deficit caused a 4-fold reduction in leaf photosynthesis and reduced leaf chlorophyll content from about 600 to 400 mg/m2 during fruit development. There was no effect on the number of hermaphrodite flowers produced (both ranging from 0 to 15 hermaphrodite flowers/panicle) but the water deficit was associated with a lower kernel yield (1.16 kg kernel/tree). Commercial yields (kg kernel/tree) in irrigated treatments were 20% greater than in the non-irrigated treatment and the kernels from irrigated trees were of a higher grade (kernel recovery >32% in T1 and T2 compared with 27.4% in T3). These results suggest that irrigation of established cashew plantations in the tropical regions of northern Australia can be restricted to the period between flowering and harvest without reducing yield.


2011 ◽  
Vol 144 (1) ◽  
pp. 390-404 ◽  
Author(s):  
Gerard W. Wall ◽  
Richard L. Garcia ◽  
Frank Wechsung ◽  
Bruce A. Kimball

2003 ◽  
Vol 142 (3) ◽  
pp. 307-316 ◽  
Author(s):  
M QASIM ◽  
M ASHRAF ◽  
M AMIR JAMIL ◽  
M Y ASHRAF ◽  
SHAFIQ-UR-REHMAN ◽  
...  

2018 ◽  
Vol 56 (4) ◽  
pp. 1387-1397 ◽  
Author(s):  
S. Torabian ◽  
M. R. Shakiba ◽  
A. Dabbagh Mohammadi Nasab ◽  
M. Toorchi

Author(s):  
Neidiquele M. Silveira ◽  
Rafael V. Ribeiro ◽  
Sabrina F.N. de Morais ◽  
Sarah C.R. de Souza ◽  
Simone F. da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document