scholarly journals Chlorophyll α Fluorescence Parameters as an Indicator to Identify Drought Susceptibility in Common Bush Bean

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 526 ◽  
Author(s):  
Alefsi David Sánchez-Reinoso ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Hermann Restrepo-Díaz

The common bean is susceptible to drought conditions and the evaluation of plant responses to low water availability can be difficult. The quantification of chlorophyll fluorescence as a sensitive trait to environmental stresses is an important alternative in the characterization of drought-susceptible genotypes. The objective of this study was to evaluate mainly the use of chlorophyll α fluorescence (maximum efficiency of PSII (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (NPQ)) and rapid light-response curves (RLCs) (initial slope of the curve (α), minimum saturation irradiance (Ik) and maximum relative electron transport rate (ETRmax)) parameters as tools for the identification of susceptible or tolerant bush bean cultivars to water deficit stress conditions in two different phenological stages. Using a randomized block design in a factorial arrangement, five bush bean cultivars (Cerinza, Bachue, NUA35, Bacata and Bianca) were evaluated under water deficit conditions by the suspension of irrigation for 15 days from 40 to 55 Days after Emergence (DAE) (vegetative stage) or 50 to 65 DAE (reproductive stage). The results showed that Fv/Fm and NPQ recorded the highest variation due to water deficit conditions, especially in the vegetative stage. The greatest reductions in Fv/Fm (0.67) and NPQ (0.71) were evidenced in cultivar NUA35 compared to its control plants (0.78 and 1.07, respectively). The parameters obtained from RLCs showed that cultivar Bacata registered the lowest α (0.17) and Ik (838.19 μmol∙m−2∙s−1) values compared to its control plants (α 0.23; Ik 769.99 μmol∙m−2∙s−1). Differences were only obtained in ETRmax in the reproductive stage (50–65 DAE) in which cultivar NUA35 reached values of 158.5 in stressed plants compared to control plants (251.22). In conclusion, the parameters derived from RLCs such as α and Ik can be used as tools to identify drought susceptibility in the vegetative stage, whereas ETRmax can be used in the reproductive stage. In addition, PSII photochemistry (Fv/Fm and NPQ) can also help to understand the agronomic responses of common bush bean cultivars to drought conditions.

HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2091-2098
Author(s):  
Alefsi David Sánchez-Reinoso ◽  
Gustavo Adolfo Ligarreto-Moreno ◽  
Hermann Restrepo-Díaz

Bean crops can be displaced to marginal areas or face abiotic stresses such as water deficit. Physiological responses allow the identification of tolerant genotypes and lead to more precise breeding strategies. The objective of this research was to evaluate the physiological (leaf gas exchange properties, leaf water content, and leaf thickness) and biochemical [proline and malondialdehyde (MDA)] responses of five common bush bean (Phaseolus vulgaris L.) cultivars (ICA-Cerinza, ICA-Bachue, NUA35, Bianca, and Bacatá) under a water shortage period by irrigation suspension (15 days) at two different phenological stages [vegetative: 40–55 days after seed emergence (DAE) or reproductive: (50–65 DAE)]. A completely randomized block design was carried out with a factorial arrangement (the phenological stage as the main factor and the cultivars as the secondary factor) for a total of 10 treatments with four repetitions per treatment. Leaf photosynthesis (Pn) showed equal photosynthesis values in control plants of all cultivars (≈20 μmol·m−2·s−1). The water deficit period reduced Pn close to 55% (≈12 μmol·m−2·s−1) at both, vegetative, or reproductive stage in all cases. Similar results were also observed on leaf thickness, with a reduction of ≈10% in water-stressed plants at either vegetative or reproductive stage in all evaluated cultivars. A higher MDA and proline production were observed in plants affected by a 15-day water deficit period, mainly at the vegetative stage. The obtained results suggest that the vegetative stage presented a more negative impact on the evaluated physiological variables in most of the cultivars used. Cultivar Bachue showed lower gas exchange properties affectation and higher proline content, which may indicate that this cultivar can be tolerant to water deficit stress conditions. This study allows suggesting that proline and MDA estimation are simple, fast, and low-cost techniques to screen cultivars to obtain more precise breeding selection in common bean. Finally, common bean cultivar selection through the use of biochemical markers can be complemented by the estimation of leaf gas exchange parameters at different phenological stages.


Author(s):  
V. Jaldhani ◽  
D. Sanjeeva Rao ◽  
P. Beulah ◽  
B. Srikanth ◽  
P. R. Rao ◽  
...  

Aims: To assess heat-induced PSII damage and efficiency in eight promising backcross introgression lines (BC2F6) of KMR-3R/N22 possessing qHTSF1.1 and qHTSF4.1. Study Design:  Randomized Complete Block Design (RCBD) with three replications. Place and Duration of Study: ICAR-Indian Institute of Rice Research, Hyderabad India during wet/rainy (Kharif) season 2018. Methodology: Eight ILs (BC2F6) and parents were evaluated for heat tolerance. The high- temperature stress was imposed by enclosing the crop with a poly cover tent (Polyhouse) just before the anthesis stage. The fluorescence parameters viz., maximum efficiency of PSII photochemistry (Fv/Fm), Electron transport rate (ETR), effective PSII quantum yield (ΦPSII), coefficient of photochemical quenching (qP) and coefficient of non-photochemical quenching (qN) were measured under ambient and high-temperature stress. Results: The heat-tolerance potential of ILs was assessed in terms of PSII activity. The results indicated that significant differences were observed between treatments (T), genotypes (G) and the interaction between T × G.  The physiological basis of introgressed QTLs controls the spikelet fertility by maintaining the productive and adaptive strategies in heat-tolerant QTL introgressed lines with stable photosynthetic apparatus (PSII) under high-temperature stress. Conclusion: The Fv/Fm ratio denotes the maximum quantum yield of PSII. The heat-tolerant QTL introgressed lines exhibited stable photosynthetic apparatus (PSII) and noted better performance under high-temperature stress. They may be used as donors for fluorescence traits in breeding rice for high-temperature tolerance.


1999 ◽  
Vol 54 (9-10) ◽  
pp. 698-703 ◽  
Author(s):  
Sergi Munné-Bosch ◽  
Karin Schwarz ◽  
Leonor Alegre

Summer diurnal variations of photosynthesis and α-tocopherol content were measured in relation to natural drought in field-grown rosemary (Rosmarinus officinalis L.) and lemon balm (Melissa officinalis L.) plants. During the summer relative water contents (RWC) of ca. 40% in Rosmarinus officinalis and ca. 30% in Melissa officinalis were attained, indicating severe drought. Both species showed similar diurnal patterns of net CO2 assimilation rates (A) with a wide plateau of maximum photosynthesis at midday in the absence of drought and one peak of maximum photosynthesis early in the morning under drought conditions. Net CO2 assimilation rates decreased by ca. 75% due to drought in both species. Melissa officinalis plants showed a significant decrease in the relative quantum efficiency of PSII photochemistry (ΦPSII), ratio of variable to maximum fluorescence yield (Fv/Fm) and chlorophyll content of leaves by ca. 25% under drought conditions at midday. In contrast, ΦPSII, Fv/Fm and chlorophyll content remained constant throughout the experiment in R. officinalis plants. Although the non-photochemical quenching of chlorophyll fluorescence increased from ca. 1.8 to 3 and the a-tocopherol content rose fifteen fold in both species in response to drought, only R. officinalis plants were able to avoid oxidative damage under drought conditions by the joint increase of carotenoids and α-tocopherol


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
M. S. Alam ◽  
M. Ali ◽  
M. M. Hossain ◽  
M.S. Hossain ◽  
M. A. Islam ◽  
...  

Abstract This experiment was conducted at the central farm of Sher-e-Bangla Agricultural University, [23.740 N latitude and 90.350 E longitude] Sher-e-Bangla Nagar, Dhaka, Bangladesh, during the period of March to May, 2014 to study the Whitefly and Thrips pest incidence in mungbean and their management practices BARI Mung-5 was used as the test crop for this experiment. The experiment consists of the following treatments: T1: Nitro 505EC (Chloropyrifos+Cypermethrin) @ 2 ml/L of water at 10 days interval; T2: Casper 5 SG (Emamectin Benzoate) @ 2gm/L; T3: Voliam Flexi (Thiamethoxam+Chlorantraniliprole) @ 0.25 ml/L; T4: Tapnor 40 EC (Dimethoate) @ 2.0 ml/L; T5: Allion 2.5 EC (Lamda-Cyhalothrin) @; T6: Admire 200SL (Imidachorpid) @ 0.25 ml/Land T7: Control. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. The lowest number of whitefly infestation per plant in the vegetative stage (4.18) and reproductive stage (2.13) was recorded from T6 treatment, whereas the highest (14.44) and (8.10) was recorded from T7 treatment in respective stage. Thrips infestation was higher (6.32) per 5 flower was recorded from T7 treatment whereas lower infestation (1.88) per 10 flower was recorded from T6. The lowest yield per hectare (1.27 ton) was found in T7 and lowest benefit cost ratio (4.16) was found in T5 whereas highest yield per hectare (1.53 ton) was found in T6 and highest benefit cost ratio (12.81) was found in T3 treatment. Among the management practices for controlling whitefly and thrips of mungbean Admire 200SL @ 0.25 ml/L of water was more effective which was followed by Voliam Flexi (Thiamethoxam+Chlorantraniliprole) @ 0.25 ml/L of water Farmers should use Admire 200SL(Imidachorpid) @ 0.25 ml/L of water at 10 days interval for controlling whitefly and thrips in mungbean.


2020 ◽  
Vol 8 (3) ◽  
pp. 221
Author(s):  
Marina Silveira Batista ◽  
Antônio Veimar da Silva ◽  
Rosilene De Morais da Silva ◽  
Lariza Lustosa de Oliveira ◽  
Carla Michelle da Silva ◽  
...  

The objective of this study was to find the best potassium dose to increase soybean yield, taking into account the economic viability of the crop in the studied region. Sixteen treatments of the interaction between potassium doses (0, 50, 100 and 150 kg ha-1) and application times (sowing, vegetative stage (V3), vegetative stage V3 + reproductive stage (R1) and reproductive stage). The experiment was set up in a randomized complete block design with four replications. Plant growth and production characteristics were analyzed and a preliminary analysis of variance was applied to check the significance of the interactions for each characteristic by Tukey’s test (α = 0.05). Subsequently, the regression analysis was performed using SAS software (2013). The economic analysis was made using the Monte Carlo methodology (Lima, 2008), and processed with the software @Risk 7 (PALISADE, 2016). Potassium fertilization was positive with increase in yield, but there was no direct relation with the application period. The 109 KCl ha-1 dose provided greater economic viability in soybean cultivation.


2019 ◽  
Vol 46 (7) ◽  
pp. 634 ◽  
Author(s):  
Dennis H. Greer

Shiraz vines grown outdoors with and without a crop load were used to determine photosynthetic and chlorophyll fluorescence responses to light across a range of leaf temperatures to evaluate the impact of presence/absence of a sink on these responses. Results indicate maximum rates of photosynthesis and light saturation in fruiting vines were biased towards higher temperatures whereas these processes in vegetative vines were biased towards lower temperatures. The maximum efficiency of PSII photochemistry was similarly biased, with higher efficiency for the vegetative vines below 30°C and a higher efficiency for the fruiting vines above. The quantum efficiency of PSII electron transport was generally higher across all temperatures in the fruiting compared with vegetative vines. Photochemical quenching was not sensitive to temperature in fruiting vines but strongly so in vegetative vines, with an optimum at 30°C and marked increases in photochemical quenching at other temperatures. Non-photochemical quenching was not strongly temperature dependent, but there were marked increases in both treatments at 45°C, consistent with marked decreases in assimilation. These results suggest demand for assimilates in fruiting vines induced an acclimation response to high summer temperatures to enhance assimilate supply and this was underpinned by comparable shifts in PSII photochemistry.


2021 ◽  
Author(s):  
Lu Yang ◽  
Sijia Bu ◽  
Shengxue Zhao ◽  
Ning Wang ◽  
Jiaxin Xiao ◽  
...  

Abstract Drought stress seriously affects tomato growth, yield and quality. Previous reports have pointed out that melatonin (MT) can alleviate drought stress damage to tomato. To better understand the possible physiological and molecular mechanisms, chlorophyll fluorescence parameters and leaf transcriptome profiles were analyzed in the “Micro Tom” tomato cultivar with or without melatonin irrigation under normal and drought conditions. Polyethylene glycol 6000 (PEG6000) simulated continuous drought treatment reduced plant height, but melatonin treatment improved plant growth rate. Physiological parameter measurements revealed that the drought-induced decreases in maximum efficiency of photosystem II (PSII) photochemistry, the effective quantum yield of PSII, electron transfer rate, and photochemical quenching value caused by PEG6000 treatment were alleviated by melatonin treatment, which suggests a protective effect of melatonin on PSII. Comparative transcriptome analysis identified 447, 3982, 4526 and 3258 differentially expressed genes (DEGs) in the comparative groups plus-melatonin vs. minus-melatonin (no drought), drought vs. no drought (minus-melatonin), drought vs. no drought (melatonin) and plus-melatonin vs. minus-melatonin (drought), respectively. Furthermore, 101 DEGs were common to these four comparative groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEGs in the four comparative groups were involved in multiple metabolic processes and closely related to hormone signal transduction and transcription factors. These results provide new insights into a probable mechanism of the melatonin-induced protection of photosynthesis and enhancement of drought tolerance in tomato plants.


2020 ◽  
Vol 33 (1) ◽  
pp. 108-115
Author(s):  
CAMILA SENO NASCIMENTO ◽  
CAROLINA SENO NASCIMENTO ◽  
ARTHUR BERNARDES CECÍLIO FILHO

ABSTRACT The adequate ratio in the supply of nitrogen (N) and potassium (K) for each phenological growth stage of melon is fundamental for its growth and development with the maximization of the dry mass partition between the vegetative and reproductive parts. The objective of this study was to evaluate the influence of N and K concentrations in two phenological growth stages (vegetative and reproductive stage) of melon and obtain the best N:K ratio for each one. In the first stage, four concentrations of N (8, 11, 14 and 17 mmol L-1) and two concentrations of K (4 and 5 mmol L-1) were evaluated in a randomized block design in a 4 × 2 factorial scheme with five replicates. In the second stage, in a 2 × 2 factorial scheme, the combinations of the two concentrations of N that generated the best characteristics in the previous stage and two concentrations of K (4.5 and 9.0 mmol L-1) were evaluated. The increase of the N concentration in the vegetative stage promoted the increase of the N, P and S content of leaves and the reduction of K, Ca and Mg. Moreover, it increased the number of leaves, the height of the plant (vertically tutored) and the leaf area. Therefore, 17:5 mmol L-1 was considered as the best N:K ratio for the vegetative stage. In the second stage, there was no effect of N and K concentrations on leaf area, yield and fruit quality. So, 14:4.5 mmol L-1 was considered as the best N:K ratio for the reproductive stage.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 288 ◽  
Author(s):  
Wangzun Chen ◽  
Libing He ◽  
Shiyi Tian ◽  
Joseph Masabni ◽  
Riqing Zhang ◽  
...  

In China, chestnut burrs (CB) are produced at a rate of a million tons per year as the major byproduct of chestnut orchards. It is necessary to utilize the chestnut forest green waste and convert it into a valuable seedling media for the sustainable cultivation of chestnut seedlings. In this study, we composted CB with two waste products of cattle farming, namely cow manure (CM) and bovine bone (BM). We also evaluated the potential of CB compost application in chestnut forest sustainability. Results indicated that the best combination was the addition of 15% BM and 55% CM. This combination significantly improved the composting environment by increasing pH, enhancing phosphorus concentration and mineral elements such as Ca, Na, Mg and Zn, and shortened the composting period to 38 days. This combination also resulted in the highest content of citric acid-P (109.20 times than the control treatment) and the lowest content of NH4+–N (0.28 times than control treatment) indicating a better N and P structure of the final compost product. This combination achieved a greater degradation rate of CB cellulose (61.45%), hemicellulose (37.87%), and a more significant degradation of outer epidermis structure. When CB compost was used as a growing media, a significant decrease in photosynthesis stress of chestnut seedlings was observed, which was mainly manifested as a decrease in photochemical quenching (qP) and an increase of the maximum efficiency of PSII photochemistry under dark-adaption (Fv/Fm). Addition of 10% CB compost (in volume basis) is suggested, which resulted in the tallest chestnut seedlings (59.83 cm) with a stem diameter of 0.91 cm after six months of growth. In summary, this research provides an environmentally friendly strategy for chestnut orchard sustainability: rapid composting of CB, then immediate application as a high-quality substrate for chestnut seedlings.


2008 ◽  
Vol 63 (7-8) ◽  
pp. 583-594 ◽  
Author(s):  
Tuǧçe Kalefetoǧlu Macar ◽  
Yasemin Ekmekçi

The effect of drought on the chickpea variety ILC 3279 was investigated at the vegetative stage. After 20 days from sowing, the plants subjected to drought stress for 3, 5 and 7 days imposed by withholding water were permitted to recover by rewatering for 2 days after 3, 5 and 7 days of drought. Shoot elongation, leaf production, fresh and dry biomass reduced while MDA and proline accumulation increased with extended duration of stress. The plants stressed for 3 days exhibited a rapid drop in their relative and absolute water contents. The quantum efficiency of PSII open centres in the dark-adapted and light-saturated state, excitation energy trapping of PSII and electron transport rate decreased significantly from the 5th day to the end of the drought treatments. Plants drought-stressed for 7 days brought about a marked increase in non-photochemical energy dissipation and a marked decline in photochemical quenching. After rewatering all chlorophyll a fluorescence characteristics except for FM completely recovered and reached the control values. Under 5 and 7 days of drought, the anthocyanin content increased gradually while the total chlorophyll content of leaves declined compared to the controls. The total carotenoid content remained unchanged during the experiments. The antioxidant enzyme response to drought treatments was quite variable. The total SOD activity upregulated with increasing duration of stress. On the other hand, the total APX activity was significantly higher only on the 7th day while the total POD activity increased from the 5th day. Differences in the total GR activity of treated groups were not statistically significant compared to their controls throughout the treatments. The present results indicate that the chickpea variety ILC 3279 withstands severe drought with its upregulated protective mechanisms at the vegetative stage.


Sign in / Sign up

Export Citation Format

Share Document